Supplement to the

WSAA Sewage Pumping Station Code of Australia

WSA 04 - 2001
Document History

<table>
<thead>
<tr>
<th>Version No.</th>
<th>Date</th>
<th>Author</th>
<th>Version Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jun 2003</td>
<td></td>
<td>Original Version</td>
</tr>
<tr>
<td>-</td>
<td>Mar 2007</td>
<td></td>
<td>3.1.1 Pumping System General. Pump suppliers revised. 4.5.7 Wet-Well Access Covers – additional requirements have been included. 4.5.11 Wet-Well Washers revised. 4.8.1.1 Support System Water - revised to address water meters and remote reading devices</td>
</tr>
<tr>
<td>1</td>
<td>July 2010</td>
<td>A. Watts, D. Raymond, M. Peters, R. Moon, J. Myrslainen M. McCormack, D. Hilton.</td>
<td>PN12 changed to PN16. Appendix H – Approved Products</td>
</tr>
<tr>
<td>2</td>
<td>August 2010</td>
<td>M. Lowe, J. Myrslainen, D. Hilton, C. Swain, C. Paxman, M. Maxwell</td>
<td>Extensive revision to enhance description of current design practices. All references to specific items of equipment have been transferred to Sewage Pumping Station Approved Products List. Appendix L replaced. Appendix O replaced.</td>
</tr>
<tr>
<td>2.1</td>
<td>July 2014</td>
<td></td>
<td>Electrical Standard Drawings updated, General text amendments</td>
</tr>
<tr>
<td>3</td>
<td>Nov 2018</td>
<td>R. Jagger</td>
<td>All segregated content removed (standard drawings, generator and electrical specifications, standard products, vehicle access, covers, corrosion, security, noise etc). Current SEW doc format used. Refreshed references and website links.</td>
</tr>
</tbody>
</table>
Contents

1. INTRODUCTION ... 6
 1.1. Acknowledgments .. 6
 1.2. Disclaimer ... 6
 1.3. Further Information .. 6
 1.4. Preface .. 6
2. SEWAGE PUMPING STATION STANDARDS 7
3. WSAA CODE CLAUSE AMENDMENTS 8
 3.1.1 Scope and Objectives - Scope ... 8
 3.1.4 Scope and Objectives - Objectives of design 8
 1.4 Abbreviations ... 8
 2.3 Due Diligence Requirements .. 8
 2.4 Materials Design ... 8
 2.5 Odour Control ... 8
 2.6 Septicity Control ... 9
 2.9 Commissioning Plan ... 9
 Figure 2.1 SPS Overflow Risk Reduction Decision Diagram 9
3.1.1 Pumping System - General ... 9
3.1.2 Pumping System - Hydraulic Design 10
3.1.3 Pumping System - Pump Selection 10
3.1.4 Pumping Systems - Pump Starters And Variable Speed Drives 10
3.4.1 Input System - Inlet MH ... 10
3.4.2 Input System - Wet-Well Design 10
3.5.1 Output System - Discharge Pipework 11
3.5.2 Output System - Valve Chamber 11
 Figure 3.3 Typical Discharge Valve Arrangement 11
3.5.3 Output System - Pressure Main ... 11
 3.5.4.1 Output System - Hydraulic Design - Selection Of Pressure Main Sizes 11
 3.5.4.2 Output System - Hydraulic Design – Velocity In Pressure Main 12
 3.5.4.3 Output System - Total Head Losses 12
 3.5.5 Output System - Receiving System 12
3.6.2 Site Infrastructure - Site Selection 12
3.7 Supporting Systems .. 12
 4.1.1 Facility - General .. 13
 4.1.2 Facility - Materials Design .. 13
 4.2 Pumping System .. 13
 4.2.1 Pumping System - Pump Discharge Pipework 13
 4.2.2 Pumping System - Pump Discharge Pipework 13
 4.2.3 Pumping System - Pump Selection 14
 4.2.3.1 Pumping System - Submersible Pumps 14
 4.2.3.5 Pumping Systems - Guide-Rails 14
 4.2.4 Pumping System - Ancillary Equipment 14
 4.2.5.1 Pumping System - Starters And Variable Speed Drives – Single And Double Speed Starters ... 14
 4.2.6 Pumping System - Emergency Stop 14
 4.2.7 Pumping System - Staging .. 15
 4.3.4.5 Pumping System - Power Supply – On-Site Generator 15
 4.3.4.6 Pumping System - Power Supply – Mobile Generator 15
 4.3.5.1 Pumping System - Power And Control Cubicle – Design 15
 4.4.6 Control And Telemetry System - Operating Levels And Default Settings 15
4.4.7.1 Flow Measurement ... 15
4.5.1.2 Pumping Station Wet-Well Isolating Valve .. 15
4.5.2.1 Wet-Well Design - Design ... 16
4.5.2.2 Wet-Well Design - Wet-Well Sizing .. 16
4.5.2.4 Wet-Well Design - Soil Investigation ... 17
4.5.2.5 Wet-Well Design - Control Levels ... 17
4.5.2.6 Wet Well Design - Detention Time .. 17
4.5.3.2 Structural Design - Design Loads And Forces 17
4.5.3.2 Structural Design - Reinforced Concrete Structures 17
4.5.3.9 Structural Design - Top Slab ... 17
4.5.3.10 Structural Design - Wet Well Benching .. 18
4.5.4 Wet-Well Ventilation ... 18
4.5.4.2 Forced Ventilation .. 18
4.5.5.1 Overflow Emergency Storage .. 18
4.5.5.3.1 Emergency Relief Structure - General .. 19
4.5.5.3.3 Emergency Relief Structure - Emergency Relief Weir Point 19
4.5.5.3.4 Emergency Relief Structure - Overflow Pipe 19
4.5.6 Ladders And Platforms ... 19
4.5.7 Wet-Well Access Covers .. 20
4.5.8 Grit Collection ... 20
4.5.9 Screens ... 20
4.5.10 Mixers .. 20
4.5.11 Wet-Well Washers ... 20
4.6.1.1 Output System Pump Discharge Pipe Work - Sizing 21
4.6.2 Valves ... 21
4.6.2.2 Valves - Pressure Main Isolating Valve ... 21
4.6.3.1 Valve Chambers - Design ... 21
4.6.3.2 Valve Chamber - Dismantling Joints .. 22
4.6.3.4 Valve Chamber - Pressure Main Tappings .. 22
4.6.3.6 Valve Chamber - By-Pass Pumping Arrangements 22
4.6.4.2 Pressure Mains - Route Location And Easements 22
4.6.4.8.2 Pressure Main Selection ... 23
4.6.5.1 Pressure Main Valves - Valves In The Valve Chamber 23
4.6.5.2 Pressure Main Valves - Valves On The Pressure Main 23
4.6.7 Odour And Septicity Control .. 24
4.6.8 Receiving Structure ... 24
4.7.1 Site Infrastructure - Site Selection ... 24
4.7.2 Site Infrastructure - Location And Layout .. 24
4.7.3 Site Infrastructure - External Layout And Access 24
4.7.6 Site Infrastructure - Site Security .. 24
4.7.8 Site Infrastructure - Power And Control Cubicle 24
4.7.9 Site Infrastructure - Signage ... 25
4.8.1.1 Support System - Water .. 25
4.8.1.2 Support Systems - Telephone / Telemetry Lines 26
4.8.1.4.1 Support Systems Materials Handling - Lifting Equipment 26
4.8.1.6 Support Systems - Fire Control .. 26
4.9.2 Documentation - Operation And Maintenance Requirements 26
4.9.3 Documentation - Contingency Plans .. 26
4.9.4 Documentation - Contingency Plans .. 26
4.11.2 Drafting Standards - Contingency Plans ... 26
5 Commissioning ... 26
APPENDIX A: PUMP SPECIFICATION 28
APPENDIX B - DESIGN CHECKLIST 52
APPENDIX C - SUBMISSION OF PRECOMMISSIONING DOCUMENTATION 54
APPENDIX D: PROCEDURE FOR PERFORMANCE TESTING OF PUMPS 55
APPENDIX E - EPA PROTOCOL 58
APPENDIX F - TELEMETRY DATA SHEET 67
APPENDIX G - SCHEDULE OF DOCUMENTS TO SUBMIT 69
1. INTRODUCTION

1.1. Acknowledgments

South East Water acknowledges that the following source documents in the preparation of this standard: Sewage Pumping Station Code of Australia WSA 04 –2001.

1.2. Disclaimer

“South East Water excludes all liability to all persons and all conditions and warranties, which are expressed or implied at law (including under statute). Where liability and conditions and warranties cannot be excluded at law, the liability of South East Water is limited at their choice, to resupply the South East Water Supplementary manual to the Sewage Pumping Code of Australia WSA04-2001 or paying the cost of resupplying the South East Water Supplementary manual to the Sewage Pumping Code of Australia WSA04-2001.”

Please note that the South East Water Supplementary manual to the Sewage Pumping Code of Australia WSA04-2001 or information contained within the South East Water Supplementary manual to the Sewage Pumping Code of Australia WSA04-2001 must only be used in conjunction with the Sewage Pumping Code of Australia WSA04-2001, of the Water Services Association of Australia and South East Water Supplementary Manual to the said code.

Further, the specification South East Water Supplementary manual to the Sewage Pumping Code of Australia WSA04-2001 may be periodically updated.

1.3. Further Information

For information and advice and to advise of possible errors, omissions and changes required for future revisions, please contact Mr Colin Paxman on cpaxman@sew.com.au.

1.4. Preface

Where the word Developer is used this can be substituted with Designer or Consultant.
This document applies to Sewage Pump Stations with a pumping capacity of up to 200L/s and Pressure Mains up to and including DN 375 (DN 450 for PE).
2. SEWAGE PUMPING STATION STANDARDS

The WSAA Sewage Pumping Station code and this South East Water supplement to the code should be read in conjunction with the following South East Water technical standards:

- Approved Products listing located in the MRWA Products Portal at mrwa.com.au
- AM2757 Covers for Underground Structures
- AM2714 Electrical Performance Specification (includes approved electrical products)
- AM2717 Standby Diesel Generator Specification
- AM2522 OM Manuals Specification
- AM2739 Corrosion Mitigation
- AM2755 Testing, Commissioning and Handover Template
- AM2759 Facility Security Specification
- AM2760 Stainless Steel Specification
- AM2761 Facility Vehicle Access Specification
- AM2488 2D and 3D Drafting
- AM2775 Watershed Template
- AM2758 Noise Specification
- AM2776 Air Treatment Unit Specification
- Protection of South East Water Sewerage Assets
- Sewage Pumping Station Electrical Standard Drawings:
 - Generator Electrical Standard Drawings
 - Sewage Pump Station General Electrical Standard Drawings
 - Sewage Pump Station Soft Starter Standard Drawings
 - Sewage Pump Station V.S.D Standard Drawings
- Sewage Pumping Station Civil & Mechanical Standard Drawings:
 - SEW_STD_000 Valve Mounting Flange
 - SEW_STD_001 Pump Guide Rail Intermediate Supports
 - SEW_STD_002 Lateral Support Brackets
 - SEW_STD_003 Valve Spindle Extension
 - SEW_STD_004 Spindle Guide Assembly
 - SEW_STD_005 Retractable Handgrip Stanchion Ladder
 - SEW_STD_006 Gas Tight Winding Box
 - SEW_STD_007 Multipart Access Covers Support Beam Removal Brackets
 - SEW_STD_008 Pump Pedestal and Chain Bracket
 - SEW_STD_060 Air Valve and Scour Valve Pit Details
 - SEW_STD_090 Plan Views
 - SEW-STD-091 Elevations
 - SEW-STD-100 Site Plan
- Appendix A: Pump Specification
- Appendix B - Design Checklist
- Appendix C - Submission of Pre-Commissioning Documentation
- Appendix D: Procedure for Performance Testing Of Pumps
- Appendix E - EPA Protocol
- Appendix F - Telemetry Data Sheet
- Appendix G - Schedule Of Documents To Submit
3. **WSAA CODE CLAUSE AMENDMENTS**

The following heading numbering relates to the heading numbering in the WSAA code.

1.1.1 Scope and Objectives - scope

Additional Paragraph:
This Code of Practice does not apply to low pressure pumping systems.

1.1.4 Scope and Objectives - Objectives of design

Additional dot point:
(k) Provide unobtrusively designed, below ground structures without a super structure to house pump sets and to store sewage until pumped.

1.4 Abbreviations

Additional Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Acrylonitrile Butadiene Styrene</td>
</tr>
<tr>
<td>FLC</td>
<td>Full Load Current</td>
</tr>
<tr>
<td>HRC</td>
<td>High Rupture Capacity</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switch Telephone Network</td>
</tr>
<tr>
<td>SEW</td>
<td>South East Water</td>
</tr>
<tr>
<td>SS316</td>
<td>Grade 316 stainless steel</td>
</tr>
</tbody>
</table>

2.3 Due Diligence Requirements

Contingency plan Replace first dot point with -As a pre-requisite to design, develop and document a contingency plan for station failure based on an environmental risk assessment and the normal operating and maintenance practices of the relevant water agency.

2.4 Materials Design

Additional paragraphs:
The use of dissimilar metals within the pumping station pump well is to be avoided. If use of dissimilar metals is unavoidable, measures shall be taken to negate the effects of galvanic corrosion of equipment. Options include insulation between dissimilar metals or the use of sacrificial anodes at strategic point within the pump well. However these options are to be implemented only after consultation with an expert in the field of galvanic corrosion.

2.5 Odour Control

Additional notes:
5. Odour emissions shall be minimised by ensuring that floating sewage debris, including fats and oils, doesn’t accumulate on the surface of sewage in the wet well and that heavy debris doesn’t accumulate in still-water areas of the wet well. The accumulation of floating debris can be lessened with a wet well washer to clean the oils off the well walls, by minimising the wet well control volume and perhaps by using an electric mixer in the wet well to turn the sewage over. The accumulation of heavy debris can be lessened by using wet well benching to minimise still water areas and with good pump selection and set-up.

6. Turbulent septic sewage will emit odours; this can be lessened by the careful design of the inlet and discharge structures to streamline the sewage flow path

7. South East Water requires a partially submerged inlet drop pipe to minimise release of hydrogen sulphide gas from the turbulence of inflows. Where there is no drop structure, because space at an existing station is limited, then turbulence is to be addressed in the design of a pump inlet structure.

8. When the calculated detention time is excessive the designer shall carry out and provide documentation on a predictive analysis of hydrogen sulphide generation at both the pump station and point of discharge. This will require analysis of sewage entering from the reticulation system. The designer will need to liaise closely with South East Water on proposed ventilation and odour control.

2.6 Septicity Control

Additional paragraphs:
If all possible design parameters have been addressed to minimise the septicity of the sewage in the pump station and pressure main, and still a problem of septicity remains, it may be necessary to chemically dose the pressure main, pump well, and / or the reticulation lines leading to the pumping station.

Where chemical dosing is considered necessary to control septicity then the designer is to detail dosing options, available impacts, advantages and disadvantages, capital / operating costs associated with the dosing.

South East Water has successfully used:
- Oxygen injection to maintain the sewage in an aerobic state.
- Ferox to lock the sulphides into solution and prevent release of hydrogen sulphide.
- Calcium Nitrate to lock sulphides into solution and prevent release of hydrogen sulphide.
- Magnesium hydroxide to raise pH and reduce evaporation of sulphides

2.9 Commissioning Plan

South East Water commissioning requirements are detailed in clause 5 and the appendices.

Figure 2.1 SPS Overflow Risk Reduction Decision Diagram

In the Operational Section Additional Note:
In the case of a re-lift pumping station the pressure main shall be kept to a minimum length to allow the station to overflow into the receiving sewer system, thereby minimising the risk of a spill.

3.1.1 Pumping System - General

Selected pumps shall conform to South East Waters approved pump listing as defined within the products portal on the MRWA web site, http://www.mrwa.com.au/Pages/Products.aspx.
3.1.2 Pumping System - Hydraulic Design

Additional dot point for System hydraulics:
• Water Hammer analysis

Amend final dot point to read:
• Calculate the pump capacity requirements for slimed pipe at both the pump cut-out level and the emergency spill level. The clean pipe situation may also need to be considered for a new rising main if this requires the pump to operate at the right hand side of its pump curve.

3.1.3 Pumping System - Pump Selection

Where WSA 101 is specified in this clause replace with South East Water specification 02-155-0 -Submersible Pumps- Refer Appendix A.

Selected pumps shall conform to South East Waters approved pump listing as defined within the products portal on the MRWA web site, http://www.mrwa.com.au/Pages/Products.aspx.

3.1.4 Pumping Systems - Pump Starters And Variable Speed Drives

Clause replaced with following:
Pump Starters and VSD’s — Pump stater shall be electronic soft starter incorporating line and bypass contactors. It shall also include an isolation switch (for insulation resistance testing) on the dead side of the soft starter, used to isolate to megger pumps.
A label is to be fitted to warn not to “megger pump sets before disconnecting them via the isolating switch”.

South East Waster endeavours to minimise its energy usage. For this reason VSD’s shall be considered on pumps above 15kW when the friction energy loss associated with the design flow rate is significant as indicated by the life cycle cost. The preferred practise is to program the system to batch pump at a low speed for most of the time and then to operate at the rising main scouring velocity periodically, and as required by the incoming flow rate. The timing and duration of the higher speed operation will be determined by the Designer in the original instance (generally an hour a day) and may be customised by South East Water in the longer term. South East Water doesn’t use VSD’s on smaller pumps because the potential pump energy savings are offset by the energy consumed by the VSD itself and the system’s reliability is affected by the extra complexity.

3.4.1 Input System - Inlet MH

Factors — Specific Design Provisions:
South East Water does not require a sump or screens because the intent of the sewage network is to get all of the sewage debris to the sewage treatment plants. Isolation of the wet well within the inlet manhole is NOT required.
Refer to standard drawing:
SEW_STD_000 for details isolating penstock mounted within wet well.

3.4.2 Input System - Wet-Well Design

Factors — Design:
South East Water does not require sumps in the wet well. Factors — Safety
Replace Wet-well to be a minimum of 1.8m diameter with 2.1m.
3.5.1 Output System - Discharge Pipework

Factors – Special Inclusion.
Additional dot point:
• Pressure main scour valve back to wet well.

3.5.2 Output System - Valve Chamber

Replace clause (e) with -valve chamber floor sloped to a drain pipe with a duck-bill check valve back to the wet well. Drain pipe shall ideally be straight so that it can be manually cleared of debris with a rod if required. South East Water doesn’t use a P-trap in this instance because the water seal is lost once the water has evaporated, which allows sewage gases to escape.

Amend final sentence to -The valve chamber shall ideally be integral with the wet-well. If an integral structure is not possible the valve chamber shall be adjacent to the wet-well and shall have an ability to shift relative to the wet well with ground movement.

Figure 3.3 Typical Discharge Valve Arrangement

Refer to Standard Drawing SEW_STD_090 & 091.

3.5.3 Output System - Pressure Main

Factors – Hydraulic Design
First dot point add, minimum of 100mm diameter for maintenance reasons. Additional dot points:
• If possible, the highest point of a rising main shall be at the discharge to minimise odour and operational issues
• Locate isolation valves in long, large diameter rising mains so that entire rising main doesn’t need to be drained for maintenance activities

Factor – Gas release valves. Additional dot point:
• Locate at high points on pressure main.

3.5.4.1 Output System - Hydraulic Design- Selection Of Pressure Main Sizes

Additional Note:
Note 2. No reduction in pipe diameter is acceptable on the pressure main.
3.5.4.2 Output System - Hydraulic Design – Velocity In Pressure Main

In second sentence change minimum velocity for pressure mains from 0.7 m/s to **0.9 m/s**

Third sentence replaced with:
The maximum velocity before discharge to the receiving sewer shall be 2m/sec

3.5.4.3 Output System - Total Head Losses

Add clarification to clause (b) -(This method is useful for quick preliminary system calculations but shall not be used for final pump sizing because of the inaccuracy of the associated assumptions.)

3.5.5 Output System - Receiving System

The following words from the first paragraph second sentence are deleted -ensuring that the ultimate flows in receiving system are accommodated within 2/3 of its diameter.
And replaced with -discharge to be online and grade.

Additional Paragraph:
The receiving structure including the cover shall have a protection system to minimise corrosion and shall be vented to minimise loss of water seals. Refer to Sewerage standard MRWA-S-307 and 401 for guidance on H₂S risk and required corrosion controls.

3.6.2 Site Infrastructure - Site Selection

Factor Site / Location
Amend second dot point so it reads:
- Provide all-weather access to the facility for all routine and emergency, operation and maintenance activities taking adjacent road conditions / rules into consideration, e.g. access doesn't require a right hand turn over double lines, etc

Additional dot points:
- Proximity to houses (odour and noise issues)
- With sufficient space to locate a temporary generator next to the switchboard in an emergency situation

Factor: Developer’s responsibilities
Additional dot point:
- If the subdivision development does not proceed as expected and the pumping station is in an area as yet undeveloped. The developer is responsible for providing an all weather access track, hard standing area and water supply taking into consideration stage development

3.7 Supporting Systems

Additional supporting systems:
(h) Alternative power sources (eg Generator)
(i) Dosing and Odour services.
(j) Site drainage
4.1.1 Facility - General

Second Paragraph, first sentence rewritten to:
The designer shall be responsible for all aspects of the pumping station and odour control aspects of the design

4.1.2 Facility - Materials Design

South East Water requirements for the coating of exposed concrete are;
- All interior concrete surfaces of the wet well, valve chamber, detention tank & inlet MH including the underside of the access covers shall be have corrosion controls implemented in accordance with:
 - MRWA-S-307, table 307-E, and
 - WSA 201 Manual for Selection and Application of Protective Coatings
- Substrate surfaces shall be prepared, coatings shall be applied and cured coatings shall be inspected and tested by South East Water approved coating application contractors.

All materials shall be selected, fabricated and installed in accordance with:
- AM2739 Corrosion Mitigation
- AM2760 Stainless Steel Specification

4.2 Pumping System

Where WSA 101 is specified in this clause replace with South East Water specification 02-155-0
“Submersible Pumps” Refer Appendix A.

4.2.2.1 Pumping System - Pump Discharge Pipework

Replace last sentence of Note 1 so that it reads -Calculate pump capacity requirements for slimed pipe at both the pump cut-out level and the emergency spill level. The clean pipe situation may also need to be considered for a new rising main if this requires the pump to operate at the right hand side of its pump curve.

4.2.2.2 Pumping System - Pump Discharge Pipework

Amend clause (a) to read -vertical pipe work in the well noting that the velocity required to transport grit, e.g. sand, through vertical pipe work is higher than for the rest of the rising main, being around 2m/s. Note also that proprietary pump discharge pedestal mounts often require the use of an eccentric (not concentric) reducer to allow sufficient distance between the pump guide rails and the vertical riser pipes for a pump’s mounting claw to pass.

Additional dot points:
(e) Vertical Pipework shall be supported at maximum 3m interval using supports as shown on standard drawing SEW_STD_002. It shall be possible to remove pipe work for maintenance activities. For straight line pipe assemblies between two parallel wall penetrations this may require a dismantling joint. All flange pairs shall be sufficient distance from the walls and floor to allow a person access with a spanner, generally 150mm clearance.
4.2.3 Pumping System - Pump Selection

Note 2 Replace drawing SPS-020 with standard drawing SEW_STD_090 & 091.
Note 3 Selected pumps shall conform to South East Waters approved pump listing as defined within the products portal on the MRWA web site, http://www.mrwa.com.au/Pages/Products.aspx.

4.2.3.1 Pumping System - Submersible Pumps

Additional to Note 1.
Any proposal to install pumps in series shall require the written approval of South East Water.
Any proposal to enable pumps to operate in parallel shall require the written approval of South East Water.

4.2.3.5 Pumping Systems - Guide-Rails

Additional requirements:
• Guide rails are to be supported as shown on standard drawing SEW_STD_001 and be provided in one continuous length.
• The lifting chain offered for pump removal must comply with Statutory Authorities requirements for industrial lifting.
• The pump lifting chain shall be as per AM2760_Stainless Steel Specification, manufactured to AS 2321 -Short-link chain for lifting purposes. The chain shall be sized to carry the weight of the pump, taking into account load carrying reductions for angled two leg slings. The minimum chain size shall be 10mm for small pumps, but larger pumps will require a minimum of 12mm or 16mm depending on whether a lower bridle is used to attach to two eyebolts. The DEE shackles shall be comply with AS 2741-Shackles . Eyebolts provide by manufacturers, as part of the lifting equipment shall be manufactured to comply with AS 2317 -Collared eyebolts . The lifting chain shall be supported and retained as shown on standard drawing SEW_STD_008 by a small diameter stainless steel cable static line between the top of the chain and the top of the well adjacent to ground level, to retrieve the chain if dropped.
• Alternatively, shackles may be proof loaded, tested and stamped stainless steel as supplied to South East Water by B & I Supplies in sizes 10mm, 12mm, and 16mm or South East Water approved equivalent.

4.2.4 Pumping System - Ancillary Equipment

Note 1 Replace with:
Wet well washers are required as per clause 4.5.11.

4.2.5.1 Pumping System - Starters And Variable Speed Drives – Single And Double Speed Starters.

Correction for part (c).
Maximum pump starts shall conform to South East Water’s specification 02-155-0 “Submersible Pumps” Refer Appendix A.

4.2.6 Pumping System - Emergency Stop

Delete clause.
4.2.7 Pumping System - Staging

Replace fourth paragraph with:
-If staging requires a change of pumps, or if the catchment is anticipated to grow beyond the current design parameters, then the access covers shall be sized to accommodate the maximum size pump that the well can accommodate.

4.3.4.5 Pumping System - Power Supply – On-Site Generator

Delete clause and replace with;
Any emergency on-site generator shall comply with South East Water standards.

4.3.4.6 Pumping System - Power Supply – Mobile Generator

Delete Note 1 and replace with;
The generator cables shall be terminated in the generator terminal compartment of the switchboard. Refer to standard electrical drawings for details of the required general arrangement.

4.3.5.1 Pumping System - Power And Control Cubicle – Design

Delete Paragraph 2 and replace with:
All electrical assets shall comply with South East Water’s electrical standards.

4.4.6 Control And Telemetry System - Operating Levels And Default Settings

Amend Table 4.3 as follows:
- South East Water does NOT use a low-level alarm (because it would use the same level measuring instrument as the normal pump cut-out in any case).
- The cut-out level is the minimum submergence level of the pump PLUS 100mm to provide some margin for calibration drift of the level measuring instrument
- South East Water’s Spill Alarm is the same as the WSA04 High-High level alarm.
(South East Water does NOT use the WSA04 Overflow Alarm because there’s a risk that the calibration of the level measuring instrument may drift higher than this significant physical invert level)

4.4.7.1 Flow Measurement

The Designer shall specify a magnetic flow meter that meets the functional requirements specified by South East Water. The flow meter selection, location, installation and testing shall conform to South East Water standards and product approvals.

4.5.1.2 Pumping Station Wet-Well Isolating Valve

Delete incoming paragraph 2 and replace with:
The incoming sewer-isolating valve shall be a knife gate valve housed on the inside of the pump well. This valve shall have a non-rising spindle, a properly supported extension spindle and a valve key piece that allows the valve to be operated by an operator with a valve key from the top of the pumping station. The knife gate valve shall have a grade 316 stainless steel (SS316) body with SS316 blade and a resilient seat as per South East Water approved products list or approved equivalent.
The valve shall be mounted to a flange end on the inlet sewer pipe in the well. If an existing station is being refurbished, and the inlet sewer pipe in the well has corroded, then the pipe shall be cut back to the well wall and a mounting flange fabrication used instead. The mounting flange shall be ductile iron or fabricated from SS316L and attached to the pump well with SS316 studs using chemical anchors. A mounting flange fabrication is NOT required for new pumps stations. Standard Drawing SEW_STD_000 shows examples of the valve mounting flanges.

A 25mm diameter valve spindle shall be used for DN150 to DN300 valves. A 38mm diameter valve spindle shall be used for DN375 valves. If the spindle length is greater than 6 metres, an intermediate spindle shall also be used.

The extension spindle shall be adequately supported from the pump well wall. Standard Drawings SEW_STD_003 and SEW_STD_004 show the arrangement for the extension spindle guide assembly and details for manufacture. Bolts or anchors of SS316 shall be used to secure the spindle guide assembly to the pump well wall. The valve spindle shall be accessible without the need to remove any covers and shall be housed at ground level within a gas tight valve-winding box as shown on Standard Drawing SEW_STD_006.

All valves to be clockwise closing.

The discharge of the drop pipe shall be 150mm above the cut-out control level so that the pipe is generally submerged throughout most of the pump operating cycle (thereby keeping sewage gases in the incoming sewer for most of the pump cycle) but allowing floating debris to fall out of the drop pipe at the end of the pump cycle. The top of the drop pipe shall have a 100mm diameter screw top cap so that top of the drop pipe can be manually accessed with a rod should debris get caught there. The bottom of the drop pipe shall be kinked so that the sewage doesn’t fall directly on the well floor. The drop pipe discharge shall be angled away from the pumps so that the inflow doesn’t adversely affect the hydraulics into the pump suction.

4.5.2.1 Wet-Well Design - Design

Delete Paragraph one and replace with:
For small pumping stations (<80L/s), the designer shall provide a single wet-well to retain the sewage inflow and house the pumping system. The inlet MH shall be connected to the wet-well by a single pipeline. The isolating valve shall be located within the wet-well.

Delete Paragraph two and replace with:
For medium to large stations (80-200L/s) the designer shall determine how the station can be taken off-line, i.e. how sewage will be diverted around the station, if maintenance access is required to work on, say, a pump pedestal seal. On lift stations this can sometimes be done by installing a high level by-pass line from the inlet manhole to the discharge manhole. On stations with larger rising mains this may require a wet well with a dividing wall to a height above the high level alarm level and a bifurcated inlet manhole. With such an arrangement one half of the station can be isolated to take it off line whilst the sewage is handled normally in the other half of the well.

4.5.2.2 Wet-Well Design - Wet –Well Sizing

Delete item (a) and replace with:
(a)The volume between the cut-in and the cut-out shall be determined by pump capacity and shall be set to limit the frequency of pump starts to the maximum number of starts per hour. The minimum size of the wet-well diameter is 2.1m. Start levels shall take into account the need to prime pumps.
Item (c) additional words -
Sufficient room to work safely adjacent to pumps, drop pipe and inlet pipework and valves and evacuate personnel if necessary

Add item (d):
(d) South East Water prefer wet-wells that are less than eight (8) metres deep to minimise the operations and maintenance issues that are experienced with deeper wells. South East Water will only consider a very deep well if it can be demonstrated that there aren’t any options available for a well of the preferred depth.

4.5.2.4 Wet-Well Design - Soil Investigation

Delete paragraph one and replace with:
The designer shall commission a soil investigation to identify ground conditions and associated installation and structural risks and controls.

4.5.2.5 Wet-Well Design - Control Levels

Replace clause with:
The designer shall adopt control levels for the wet well in accordance with Table 4.3 (NOT Table 4.4)

4.5.2.6 Wet Well Design - Detention Time

Additional Paragraph:
In addition to the H,S generation due the wet well and pressure main, the designer will need to consider the septicity of the inlet sewerage and the impact this will have on the final product at the end of the pressure main. Any treatment proposal shall be referred to South East Water representative for approval.

4.5.3.2 Structural Design - Design Loads And Forces

Replace clause (c) with:
Areas accessible to trucks-AS 5000
Replace clauses (i) and (ii) respectively with:
(i): The provision of permanent ground anchors, designed in accordance with AS/NZS 1170.0 and AS 4678. The design shall incorporate an allowance for possible long-term corrosion of the anchors. All permanent ground anchors shall be fully grouted and encapsulated.

(ii): The provision of sufficient dead load to resist the flotation forces in accordance with AS/NZS 1170.0.

4.5.3.2 Structural Design - Reinforced Concrete Structures.

Additional sentence.
Structure shall be designed with a minimum concrete strength of 30MPa.

4.5.3.9 Structural Design - Top Slab

Additional paragraph:
Concrete slab to be one level and incorporate well covers, storage area for removed covers, electrical cabinet and valve pit.
The cover opening in the top of the well shall be large enough to allow for future pump upgrades associated with later stages of catchment development. The slab shall not present a trip hazard to personnel working on the installation or to the general public. Landscaping is required to blend the finished surface of the slab into the surrounding terrain. The slab is not to be located in an area that would be subject to local flooding. All water from surrounding area is to drain away from roof slab.

4.5.3.10 Structural Design - Wet Well Benching

Additional sentence
The maximum allowable grade of the benching is 30˚ to horizontal.

4.5.4 Wet-Well Ventilation

New paragraph:
South East Water applies Note 2 in Clause 4.5.4.1 to pump stations receiving fresh domestic sewage provided that the pump station has been fitted out with fittings, fixtures and concrete coatings that resist corrosion.

Odour modelling is required for pump stations that receive industrial sewage and those that handle aged sewage (e.g. from upstream pump stations) to ensure that these odours don’t cause an issue with nearby neighbours. The dispersal of gaseous emissions shall be modelled using AUSPLUME, which is the EPA approved air dispersion model that’s used to model emissions of wastes to air, e.g. gaseous plumes from vent stacks. EPA Victoria requires that AUSPLUME is used in accordance with the requirements set out in the State Environment Protection Policy (Air Quality Management) S240 Schedule C.

As AUSPLUME requires a minimum exit velocity from a vent stack it generally necessitates a mechanical ventilation system, because the flow rate from a natural ventilation system is variable depending on the local climate.

4.5.4.2 Forced Ventilation

New sentence:
All pumping stations with forced ventilation shall have AUSPLUME modelling carried out. All pump stations shall be designed such that forced ventilation can be installed later should it be required. A laydown area next to the vent and a 100 diameter electrical conduit from the main electrical board shall be provided to this location.

4.5.5.1 Overflow Emergency Storage

Delete paragraph one and replace with;
The emergency storage provides time for South East Water to implement its operational contingency plan in an emergency situation, e.g. a power outage. The emergency storage shall be capable of retaining the peak dry weather sewage inflow, from the ultimate development to be serviced, for a nominal minimum of two (2) hours. South East Water may however require more than 2 hours storage for stations that are located in areas that are remote or have accessibility issues e.g. traffic congestion. South East Water needs to be consulted during the station’s planning stage to make this determination in relation to an increased storage requirement.

When an emergency storage tank is available South East Water will also this tank to facilitate maintenance activities in the bottom of the wet well, i.e. the sewer network will back up into the emergency storage
when the wet well is off-line. For this reason the inlet pipe for the emergency storage shall take the inflows from the inlet manhole (rather than the wet well).

Should an additional storage tank be required, the following will need to be considered and discussed with South East Water:

- The manner in which the emergency storage will start to fill when the pump station’s high alarm level is reached in and the manner it will fully empty when the station returns to normal operation (including sloped floor to discharge)
- The installation of wet well washer(s) in a manner similar to clause 4.5.11 but installed to wash at a higher level
- The installation of a water tap for South East Water’s cleaning crew to connect their equipment to. If the emergency storage is directly adjacent to the wet well this tap may be the one in the cubicle used to wash down the wet well. If the emergency storage is some distance away a separate tap shall be installed; this tap shall have a secure closure so that the public can’t readily access it and leave it flowing.
- Accessibility for confined space entry for cleaning and maintenance activities e.g. number of covers required (minimum of two covers), facilities to meet fall-from-heights regulations similar to clause 4.5.7, positive isolation valves on the storage tank’s inlet and discharge pipes
- Ventilation requirements during confined space entry and for normal operation
- Corrosion protection requirements
- Level monitoring requirements

4.5.5.3.1 **Emergency Relief Structure - General**

Additional sentence:
The emergency relief structure shall comply with the requirements of the memorandum of understanding (MOU) with the EPA. Refer Appendix E.
Note The Consultant shall supply all documentation to South East Water who will obtain approval from the EPA.

4.5.5.3.3 **Emergency Relief Structure - Emergency Relief Weir Point**

Additional sentence;
The flap gate shall be as per South East Water approved products list or approved equivalent. Flap gate to be installed to ensure that a positive and effective gas seal is achieved.

4.5.5.3.4 **Emergency Relief Structure - Overflow Pipe**

Additional paragraph:
Where an emergency overflow relief pipe is installed into an unformed drain, creek or water course then the designer will be required to indicate impact of 1:10, 1:20, 1:100 storm events on emergency overflow relief pipe operation.

4.5.6 **Ladders And Platforms**

Clause replaced with:
The designer shall minimise the requirement for person entry. Ladders and platforms for safe entry are required for both the wet-well and the valve chamber, noting that any platforms or ladders provided shall NOT impede rescue from the wet-well, which is a confined space and so requires a person to wear a harness. The ladders and platforms shall be designed to comply with AS1657. The ladders shall be fitted with extendable stanchions in accordance with standard drawing SEW_STP_005.

4.5.7 Wet-Well Access Covers

Wet well and all other covers shall comply with South East Water standards, namely the approved products listing and AM2757 Covers for Underground Structures.

4.5.8 Grit Collection

Delete Clause, current policy does not require grit chambers.

4.5.9 Screens

Delete Clause, current policy does not require installation of screens.

4.5.10 Mixers

Replace notes 1 and 2 with:
1. An electric mixer may need to be installed in the pump well when the sewage is expected to be heavily laden with debris or the well diameter is large in comparison with the pumping capacity.
2. Mixers shall be as per South East Water’s approved products list.
3. Placement and orientation of mixers is critical to ensure efficient mixing of the well contents.
4. Mixers shall be sized to ensure that they draw only 85% of full load current under the most adverse well conditions. This gives some provision for the mixer to shed a rag if required, instead of the rag causing the motor to trip out on over-current.
5. The mixer is to be configured to commence just prior to pump start and to run a minimum of 2 minutes during pump operation to enable sufficient mixing for solids to be placed in suspension.
6. The mixer is to be controlled by the PLC to run at appropriate intervals to achieve sufficient mixing to enable all suspended and floating solids to be pumped out of the wet well. This will be dependent on station activity and the quality of the sewage inflow. South East Water may later alter the frequency and duration of operation as a consequence of local field experience at the station.

4.5.11 Wet-Well Washers

Replace sentence one with:
Well washers shall be as per South East Water’s approved products list.

The designer shall consider the following when designing wet-well washers:
1. Wet-well washers clean by water volume; they’re not intended to be high pressure cleaners. The best results are achieved with a slow rotation speed - one nozzle directed at the wall and the other at the pumps / guide rails / floats etc;
2. Wet-well washers don’t need to operate every pump down. The wet-well washer is to be controlled by the PLC to run at appropriate intervals. Trials have shown that a -fatty well can be kept clean with a program of a 1 minute wash every 6 hours using around 100 litres of water per day.
3. The wet-well washer unit should be installed just above the cut-in level (say 1 metre) so that the
spray can be directed at the cut-in level and below, where most of the fats build up. (Note that the
washers don’t mind being submerged once in a while if the level gets above the cut-in level.)

Add Note 3;
3. Install a backflow prevention device to the water supply for the wet-well washer.

4.6.1.1 Output System Pump Discharge Pipe Work - Sizing

Additional paragraph:
All penetrations of pipe work through concrete walls of the wet-well and valve chamber shall incorporate
an approved puddle flange (thrust ring) or other such thrust device to provide adequate thrust restraint for
all pressure surges and vibrations created by the pump. Grouting of penetrations through block outs shall
be carried out using high quality non-shrink grout with at least the same strength as the parent concrete.

The pressure main shall be fitted with a scour line to enable the main to be drained back to the pump-well
or into an adjoining sewer reticulation system. The valve to operate this scour shall be accessible from the
surface via a gas tight winding box adjacent to the access cover within the valve chamber.

All buried pipe work in vicinity of the valve chamber and the wet-well shall have approved embedment to a
depth of 200mm above the pipe.

4.6.2 Valves

Clause replaced with:
South East Water require valves to be:
- Resilient seated valves.
- Clockwise closing.
- Minimum pressure class shall be PN16
- All valves, be they isolation valves, non-return valves, air valves, etc shall be as per the South East
 Water approved products list.

4.6.2.2 Valves - Pressure Main Isolating Valve

Additional sentences:
An isolation valve shall be located downstream of each non-return valve. The isolation valve shall have a
non-rising stem, cast iron body and bronze wedge and fusion bonded protective coating. Operation of the
isolation valves for each pump from the surface is not required, but is to be handwheel operated, clockwise
closing. However surface operation (via a winding box) of the pressure main scour valve is required without
removing any valve chamber access covers. All valve-winding boxes are to be gas tight to prevent odours
escaping from the installation. Refer standard drawing SEW_STD_006 for details.

4.6.3.1 Valve Chambers - Design

Additional sentences:
The wet-well roof slab shall incorporate the covers of the valve chamber unless otherwise approved. The
valve chamber covers shall be large enough to enable crane access to remove valves for maintenance
purposes. For valves greater than DN150, removal must be able to be carried out as a —direct lift
operation.
The valve chamber drain back to the pump-well shall be fitted with a duck bill valve or approved equivalent. A water seal is not required.

4.6.3.2 Valve Chamber - Dismantling Joints

Additional Notes:
South East Water requires approved dismantling joints to be provided on each pipeline in the valve chamber. Where Uniflanges are used, they shall utilise only stainless steel grade AISI 4100 set screws. The setscrew torque shall be tightened to the recommended level as shown below;

- DN50-100 95NM
- DN150-375 125NM
- DN400—600 160NM

In vertical pipe work the Uniflanges joint shall be at the top of the pipe.

4.6.3.4 Valve Chamber - Pressure Main Tappings

Additional Item:
(g) to be fitted with down turned copper tails to prevent accidental discharge into the face of maintenance personnel.

4.6.3.6 Valve Chamber - By-Pass Pumping Arrangements

Replace sentence one with:
Facilities for emergency bypass pumping shall be provided on the scour line.

4.6.4.2 Pressure Mains - Route Location And Easements

Replace clause with:
Pressure mains are not permitted in private property. Pressure mains shall be located in road reserves. Any other location is to be agreed with South East Water prior to completing the final design.

Pressure main location is to be identified with relevant posted signs. Signs are to be erected at

- Change of direction.
- At fittings along the pipeline.
- Minimum 500m.
- Posts are to be coloured green and comply with standard drawing SEW_STD_060.
- South East Water will provide the signage to be installed at the developer’s / contractor’s cost. The sign to be provided is detailed in Figure 1 below.
In Valves including all isolation and air valves

The scour valves or eduction points shall be provided on the pressure main when the system volume exceeds 10m³.

4.6.4.8.2 Pressure Main Selection

Additional sentence:
The pipe shall be as per South East Water approved products list.

4.6.5.1 Pressure Main Valves - Valves In The Valve Chamber

Additional to Note 2:
The scour valve on the pressure main is to be designed in accordance with Standard Drawing SEW_STD_090 & 091 and:

a) Provide suitable access and hard standing area for an 18,000 litre tanker (semi-trailer with double bogey trailer) to park and comply with any relevant standards and clause 4.7.3.

b) Scour outlet to be fitted with a 75mm female camlock fitting complete with lock-down cap to Australian Standards.

c) Scour valves are to be capable of operation from the surface level. d) All valves to be clockwise closing.

d) Scour valves or eduction points shall be provided on the pressure main when the system volume exceeds 10m³.

4.6.5.2 Pressure Main Valves - Valves On The Pressure Main

Additional paragraph:
The designer shall submit plans of proposed valve location for approval from South East Water prior to completing design plans.

Valves including all isolation and air valves shall be as per South East Water approved products list.

In determining the location of the air release valve the following factors are to be considered:

- Proximity to properties.
- Venting requirements and subsequent odour issues.
- Aesthetics of vent.

Standard Drawing SEW_STD_060 details a typical Air Release / Scour Pit details.
4.6.7 Odour And Septicity Control

Additional note:

4. Where it is considered necessary to dose to control odour / septicity then an odour assessment is required from the designer detailing chemical dosing options, impacts, advantages / disadvantages, operating / capital costs of all dosing options.

5. Where an Air Treatment Facility is not to be located at the pump station and there is a reasonable risk of odour at the pump station (now or later), a laydown area shall be provided adjacent to the vent which is large enough for a potential future installation of an Air Treatment Facility in accordance with AM2776. This area shall have reasonable vehicle access for replenishment of media. Two DN100 electrical conduits shall be provided to this area from the main electrical board for later electrical connection of this facility. Installation of a water supply to this area shall also be considered and installed where necessary.

4.6.8 Receiving Structure

Additional paragraph:
The internal concrete surfaces of the receiving Maintenance Hole structure must have a corrosion control in accordance with MRWA-S-307, MRWA-S-401, WSA201 and South East Water approved coating application contractor list.

4.7.1 Site Infrastructure - Site Selection

Second Paragraph comments:
South East Water will require the designer to consult with them if other than options (i) or (ii) are proposed.

4.7.2 Site Infrastructure - Location And Layout

In second paragraph, replace 100mm with 300mm, i.e. -...300mm above the 1 in 100 year flood level.

4.7.3 Site Infrastructure - External Layout And Access

Additional comments:
Vehicle access shall be provided in accordance with AM2761- Vehicle Access Standard.

4.7.6 Site Infrastructure - Site Security

Additional sentence:
Facility security shall be provided in accordance with AM2759- Facility Security Specification.

4.7.8 Site Infrastructure - Power And Control Cubicle

Replace sentence one with:
The electrical cubicle shall be installed on a concrete plinth that is an integral part of the wet-well top slab. The cubicle shall be located to provide a safe working area adjacent to covers, noting that electrical rules require an emergency egress clearance of at least 600mm between the cubicle doors in any position and obstructions such as the fence, top slab openings, etc.
Additional comments:

- As future maintenance access may be required to excavate the incoming sewer and rising main in the event that they develop a leak, it's preferred that the cabinet is not located directly over these pipes, but there is a horizontal clearance of at least 600mm.
- As the visibility of the Operator Interface Panel (OIP) may be compromised in bright light it shall be protected by orienting the cubicle to shade the OIP in harsh sunlight or by providing an awning.

4.7.9 Site Infrastructure - Signage

Additional paragraph:
If the pump station is a fenced site South East Water will provide a station identification sign to be installed on the fence near the gate.
The contractor shall supply and install a sign on the cubicle. Sign 1 Cubicle sign is detailed below.
A stainless steel external nameplate (230mm x 80mm) engraved with the following detail example. Note – For externally mounted switchboards only.

```
SOUTH EAST WATER - SP406
PINE AVENUE MELWAYS REFERENCE 145-D2
EMERGENCY PHONE 132812
```

Sign No 2 details
- Made from Stainless Steel plate 230mm X 80mm, holes in 4 corners for attachment.
- Sample shown below:

![DANGER CONFINED SPACE ENTRY TO ALL PITS BY PERMIT ONLY](image)

4.8.1.1 Support System - Water

Replace clause with
A metered water property service of minimum DN20 and a static pressure of at least 20m head shall be provided to ensure the wet-well can be cleaned manually. The designer shall detail the installation of backflow prevention devices in accordance with AS/NZS 3500.1 — Plumbing and drainage – Water services. The device and the fire hose reel are to be housed within a separate section of the control cubicle. The hose reel shall be as per South East Water approved products list.

It shall have at least 18m of 19mm diameter PVC fire fighting hose complete with a brass jet type grip operation nozzle.

The cubicle size is to be large enough to allow maintenance of the back flow prevention device.
The contractor shall purchase and install a water meter and a remote reading device for each South East Water pumping station.

4.8.1.2 Support Systems - Telephone / Telemetry Lines
Delete clause.

4.8.1.4.1 Support Systems Materials Handling - Lifting Equipment
Replace sentence one with:
Refer to South East Water supplementary clause 4.2.3.5 for lifting chain requirements.

4.8.1.6 Support Systems - Fire Control
Delete Clause.

4.9.2 Documentation - Operation And Maintenance Requirements.
Replace Appendix D of WSA101 with South East Water specification 02-155-0 “Submersible Pumps” Refer Appendix A.

4.9.3 Documentation - Contingency Plans
Additional paragraph:
The contingency plan shall incorporate the following:
1. Functional requirements for ERS (Provided at functional design stage).
2. A plan of the drainage system that the ERS is discharging into. In detail the plan is to show the location of drainage pits, size of drains and flow paths until the drainage system discharges into an open creek, river or waterway. The plan shall detail locations where access may be gained to carry containment activities, such as sandbagging and shall nominate other containment options.

4.9.4 Documentation - Contingency Plans
Additional sentence:
Submission of the final design shall also include the completed design checklist. Refer to Appendix B.

4.11.2 Drafting Standards - Recording Of As-Constructed Information
Additional paragraph:
All design drawings shall comply with AM2488-2D and 3D Drafting.
All As Constructed Information shall comply with AM2488, AM2775-Watershed Template and the MRWA Survey Manual.

5 Commissioning
Additional Paragraph:
Prior to commissioning all documentation outlined in preceding paragraph must be forwarded to South East Water’s officer. In addition the pre-commissioning checklist Appendix C shall be completed and lodged
5 working days prior to the planned commissioning date. Notification of the upcoming commissioning must be made to the Telemetry Manager 14 days in advance, to ensure that telemetry points are set up, and, the telemetry must be pre-commissioned in consultation with him to ensure that all alarms are being received at South East Water’s Communications Centre. The pump station will not be commissioned / deemed operational until all documentation has been provided together with all the documentation listed in **Appendices G**.

NOTE: South East Water will NOT commission pump stations on a temporary power
APPENDIX A: PUMP SPECIFICATION

SPECIFICATION: 02-155.0

Submersible Centrifugal Sewage Pump

PREFACE

This specification was prepared by South East Water and is based directly on the Water Services Association of Australia (WSAA) Sewage Pumping Code Woking Group „Draft’ Standard for Submersible Sewage Pumps.

The objective of the specification is to provide design, manufacturing and performance requirements for manufacturers of submersible electric pumps and ancillary equipment.

TABLE OF CONTENTS

SCOPE OF DOCUMENT
SCOPE OF SUPPLY
REFERENCED DOCUMENTS
TECHNICAL REQUIREMENTS
 System Characteristics
 Pump Selection
 Operating Speed
 Efficiency and Power Consumption
 Net Positive Suction Head (NPSH)
 Minimum Submergence
 Noise
 Vibration
 General Arrangement
 Pump
 Motor
 Ancillary Items
 Manufacturing
 Materials
 Machining
INSPECTION AND TESTING
 Materials
 Workshop Assembly
 Type Tests
 Site Performance/Commissioning Tests
 Test Requirements
 Test Officer
 Analysis & Presentation Of Test Results
 Rejection Of Pump Units
 Warranty Period
PACKING, TRANSPORTATION & DELIVERY
 Labels & Markings
 Packing
SPARE PARTS & TOOLS
DOCUMENTATION
FORMS
 Technical Data Sheets
SCOPE OF DOCUMENT

This specification covers the design, manufacture, inspection, works testing, supply, delivery and pre-commissioning of submersible type pumps as may be specified in the Technical Data Sheet.

(Submersible type pumps are those that are designed to be immersed in the liquid when operating, but may operate non-submerged.)

SCOPE OF SUPPLY

The Contractor shall include within the scope of supply:

- the pump unit, including all integral equipment required for the operation of the pump in the intended service including drive motor and instruments,
- for a pump specified for wet well service, a discharge support bend complete with coupling device and guide rail brackets
- for a pump specified for dry well service, a suction bend and mounting stool
- labour materials and instruments required for the setting to work and commissioning of the pump (as required in the Technical Data Sheets),
- spare parts and tools and
- operation and maintenance manuals.

The pump unit shall be supplied completely assembled, with the other ancillary equipment supplied separately. Installation of the pump and ancillary equipment may be required (refer to the Technical Data Sheet).

The workmanship, equipment, accessories and materials provided in accordance with this specification shall comply in design, construction, installation and performance with the latest relevant Australian Standards or in their absence the latest relevant British Standards or international ISO Standards.

The Contractor shall ensure all equipment and materials supplied are in accordance with requirements of all relevant authorities and that all required approvals are obtained.

REFERENCED CODES AND STANDARDS

The following Australian Standards are referenced within this document:

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS111</td>
<td>ISO Metric Hexagon Commercial Bolts & Screws.</td>
</tr>
<tr>
<td>AS1112</td>
<td>ISO Metric Hexagon Nuts, including thin nuts & castle nuts.</td>
</tr>
<tr>
<td>AS1217</td>
<td>Acoustics – Determination of sound power levels of noise sources.</td>
</tr>
<tr>
<td>AS1359.102</td>
<td>Rotating Electric Machines – Methods For Determining Losses & Efficiency.</td>
</tr>
<tr>
<td>AS1359.109</td>
<td>Rotating Electric Machines – Noise Limits.</td>
</tr>
<tr>
<td>AS1359.114</td>
<td>Rotating Electric Machines – Vibration Measurements & Limits.</td>
</tr>
<tr>
<td>AS1444</td>
<td>Wrought Alloy Steels – Standard & Hardenability (H) Series.</td>
</tr>
<tr>
<td>AS1449</td>
<td>Wrought Alloy Steels – Stainless & Heat Resisting Steel Plate, Sheet & Strip.</td>
</tr>
<tr>
<td>AS1646</td>
<td>Elastomeric Seals For Waterworks Purposes.</td>
</tr>
</tbody>
</table>
AS1833 Iron Castings – Austenitic Cast Iron.
AS1939 Degrees Of Protection Provided By Enclosures For Electrical Equipment.
AS2074 Steel Castings
AS2317 Collared Eyebolts
AS2417 Roto dynamic Pumps - Hydraulic performance acceptance tests - Grades 1 and 2
AS2768 Electrical Insulation Materials – Evaluation & Classification Based On Thermal Endurance
AS3000 SAA Wiring Rules.
AS3679.1 Structural Steel – Hot-Rolled Bars & Sections.
AS3709 Vibration & Shock – Balance Quality Of Rotating Rigid Bodies.
AS4087 Metallic Flanges For Waterworks Purposes.
AS4158 Thermal-Bonded Polymeric Coatings On Valve & Fittings For Water Industry Purposes.
AS4680 Hot-Dip Galvanized (Zinc) Coating On Fabricated Ferrous Articles.
AS5000.1 Electric Cables - Polymeric insulated - For working voltages up to and including 0.6/1 kV Electric Cables – Approval & Test Specification

TECHNICAL REQUIREMENTS

System Characteristics

The system characteristics are as stated in the Technical Data Sheet. The required Guarantee Point is given for the purpose of performance testing under AS 2417-2001 Roto dynamic Pumps - Hydraulic performance acceptance tests – Grade 1 and 2, and is subject to the tolerances stated therein for the Class of test (1 or 2) stated in the Technical Data Sheet.

Secondary duty points, if stated, are given for the purpose of defining the required shape of the pump head-quantity characteristic curve. Allowable deviation from these secondary points, for guarantee, shall be to the following extent:

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>Flow Rate</td>
</tr>
<tr>
<td>+/- 3%</td>
<td>+/-1%</td>
</tr>
<tr>
<td>+/-6% Pump Speed</td>
<td>+-2%</td>
</tr>
</tbody>
</table>

Pump Selection

The pump selected shall have a specific speed range \(N_q = 20 \) to 80 with a stable head-quantity characteristic curve (i.e. negative gradient from zero flow to end-of-curve). The pump shall be selected to:

- meet all of the duty points within the range of 55% to 110% of the pump’s optimum flow rate (i.e. Best Efficiency Point), with the Guarantee Point as close to the optimum flow rate as possible,
- attain a maximum achievable flow, for continuous operation, not less than 20% greater than the highest flow duty point.
The Contractor shall adjust the duty point flow rates, specified in the Technical Data Sheet, as follows to accommodate reduction in performance with time: -

- Pumps with fully shrouded impellers: 0%
- Pumps with semi-open impellers: 5%
- Pumps with screw-type impellers: 10%

The pump supplied shall be fitted with an impeller diameter no greater than 95% of the maximum size impeller for that casing.

Operating Speed

The pump’s operating speed shall not be greater than that specified in the Technical Data Sheet. If the pump is required to operate at various speeds, driven by a variable speed drive unit, the pump shall be selected such that the maximum supply frequency to the motor is less than 50 Hz and the minimum frequency preferably less than 80% of the maximum.

Under no circumstances shall the minimum operating frequency be less than 20 Hz.

Efficiency and Power Consumption

Normally the pump shall be selected to maximise operating efficiencies without modification. Polishing or coating of the impeller may be undertaken in special cases where aggressive of abrasive materials are being pumped.

Power consumption of the pump shall not exceed 95% of the motor rated power output:

- at zero flow,
- at any point within the operating range, or
- at any point corresponding to flows 20% beyond the maximum operating range.
- Referring to the installation sketches, the pump shall not draw more than: -
- 85% of full load name plate current at duty point (ultimate duty point in the case of a staged development), or
- 90% of nameplate full load current with the water level at spill level in the well.

The motor output shall be rated for as when operating in air (i.e. allowance is not to be made for additional cooling effect due to immersion in liquid)

If the Technical Data Sheet to this Appendix requires an additional allowance to be made for a future increase in performance output (either by fitting a larger impeller or increase in speed), the rated motor shall be sized for the increased performance requirement

Net Positive Suction Head (NPSH)

The pump shall be selected to have a Net Positive Suction Head Required (NPSHR) not in excess of 10 meters head at any point between zero flow and 120% of the maximum operating range flow.

The NPSHR of the pump shall be based on actual 3% head drop method test results, adjusted by calculation to represent a 1% head drop.

Minimum Submergence

The pump shall be guaranteed to operate continuously at the manufacturers’ minimum submergence level stated in the Technical Data Sheet, without:

- formation of vortices, or
• over heating of the motor

Noise

If specified for dry well service or operating at minimum submergence, the Sound Pressure Level (SPL) of the pump unit shall not exceed 85dB(A) measured on a one metre radius and in accordance with AS1359.109.

Vibration

When operating at minimum submergence level and at a submergence of 20m head, the vibration of the pump unit shall not exceed the limits specified in AS1359.114, Grade N.

DESIGN

General Arrangement

The pump unit shall be a composite of the drive motor and the pump wetted end. The latter shall be joined to the former by means of an oil chamber housing containing the shaft sealing devices. The impeller shall be mounted on the one-piece motor shaft.

The whole unit shall be orientated shaft vertical with the motor above the pump.

If specified in the Technical Data Sheet for wet well service, the pump unit shall be supported on a separate discharge bend manufactured with integral mounting feet.

If specified in the Technical Data Sheet for dry well service, a mounting stool designed to accommodate a separate suction bend shall support the pump unit.

PUMP

Solids Handling Capacity

Unless otherwise stated in the Technical Data Sheet, the pump will be required to pump unscreened sewage. Unscreened sewage shall be deemed to include: -

• flammable solids
• hard solids (e.g. grit, sand and stones)
• fibrous solids (e.g. rags, rope, and sanitary napkins)
• mineral and other oils.

The pump (impeller and casing ports) shall be non-clogging and non-ragging, designed to pass a sphere of the following minimum diameters:

<table>
<thead>
<tr>
<th>Discharge Port Diameter</th>
<th>Minimum Sphere Passing Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 100 mm</td>
<td>75 mm</td>
</tr>
<tr>
<td>150 – 300 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>350 mm and over</td>
<td>150 mm</td>
</tr>
</tbody>
</table>

Alternative sphere clearances to those stipulated above will be considered, provided evidence of reliable operation over time, in a similar environment, can be produced by the supplier, and endorsed by the end user.
Grinder type pumps are considered to not comply with the requirements of this Specification and are therefore a special case. Grinder type pumps will only be considered after consultation with South East Water representatives.

Impeller

The impeller type shall be designed to pump raw un-macerated sewage and be of a proven design to provide non-ragging and non-clogging performance throughout its life.

In particular the impeller shall:

- be of an approved grade of cast iron (AS1830, Grade T220 or superior), and shall be accurately finished to reduce friction, leakage loss, and recirculation, to a minimum. Alternative materials having the same or better wear characteristics will be considered as an alternative.
- be dynamically balanced prior to assembly in accordance with AS3709, grade G6.3.
- have streamlined vanes designed to smoothly pass all solids noted in 4.2.2.1 above.
- have adjustable components or replaceable seal rings (refer Section 0) to enable the efficiency and capacity of the pump to be re-established at minimal cost and maximum intervals.

Casing

The pump casing shall comprise of a volute separate to the motor casing. The volute shall be manufactured to be easily removed for impeller inspection and cleaning.

The pump casing components shall be of an approved grade of flake-graphite grey cast iron (AS1830, Grade T250 or superior) or wear resisting high-chrome iron. Spheroidal graphite irons and carbon steels are not acceptable.

The volute wall thickness shall be sufficient to accommodate pressures up to 1.5 times the design head, after loss of 25% of the wall thickness due to erosion, etc.

If specified in the Technical Data Sheet for wet well service, a pump shall have a volute shaped so that the discharge nozzle aligns with the centreline of the pump, such that the pump induces a single plane moment only on the discharge support bend.

If specified in the Technical Data Sheet for dry well service, a pump shall have the volute incorporate in- built hand-holes to enable the operator access for impeller inspection (discharge ports DN250 and larger).

Wear Rings / Plates

Renewable sealing rings and wears shall be fitted to pumps with shrouded impellers. Wear ring (s) shall:

- be of dissimilar corrosion and erosion resistant materials and
- have a minimum hardness 50 Brinnell higher than the impeller sealing ring(s), to prevent galling during operation.

Pump / Motor Shaft

The shaft shall be machined from solid one-piece bar stock of stainless steel in accordance with AS1444, Grade 316 (or South East Water approved equivalent) and have a ground finish over its entire length.

Other shaft materials with a proven history of reliable performance will be considered as an alternative to the grade of shaft stated above.
The shaft shall be designed such that: -
- for fixed speed pumps, the first lateral critical speed is not less than 150% higher than the maximum operating speed of the pump,
- for pumps required to operate at varying speeds, the first lateral critical speed is not less than 300% higher than the maximum operating speed of the pump.

The first lateral critical speed shall be calculated for the maximum diameter impellers able to be fitted to the pump, without any support from wear ring(s) or neck ring(s).

The maximum lateral deflection of the shaft shall be determined to establish permissible internal clearances, taking into account all lateral hydraulic reactions on the impeller and any external loads.

Shaft Seal & Seal Chamber

Sealing of the shaft between the pump and motor shall be by independent hard faced mechanical seals contained within an oil bath or lubricated chamber providing sufficient cooling and lubrication of the seal faces to ensure optimum performance.

Each mechanical seal shall be: -
- of robust construction, designed to withstand the adverse operating conditions associated with sewage pumping, and be
- guaranteed for a minimum life of 5000 hours under normal sewage pumping conditions. (i.e. 50% to 110% of BEP flow)

Seal face materials shall be: -
Top Seal-- Silicon Carbide / Graphite
Bottom Seal-- Silicon Carbide / Tungsten Carbide

Alternate configurations of seal materials utilising silicone carbide, tungsten carbide, and cemented carbide, will be considered provided the supplier guarantees in writing, the wear resistance (life) and sealing capacity of the configuration offered.

The seal chamber shall incorporate: -
- oil fill and drain points and
- a leak detection device in pump units 7.5 kW and over, enabling water leakage past the lower mechanical seal to be detected, and an alarm signal generated.

Seals located in the pumped medium above the impeller do not comply with this requirement.

Reverse Rotation

All pump components shall withstand, without damage, the effects of reverse rotation due to reverse flow through the pump up to 120% of normal direction rated speed.

MOTOR

General

Generally, the motor shall be in accordance with the requirements of AS1359 and be of type tested design. Motors shall be capable of sustaining a minimum number of starts per hour in accordance with the following table: -
<table>
<thead>
<tr>
<th>Limiting Motor Rating (kW)</th>
<th>Maximum Starts Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 15</td>
<td>12</td>
</tr>
<tr>
<td>>15</td>
<td>8</td>
</tr>
</tbody>
</table>

It is assumed for the figures stated above, that the starts occur generally evenly spaced over the hour, i.e. 12 starts per hour occurring approximately every 5 minutes.

The motor shall be:

- 415V, 50Hz, 3 phase, 4 pole or greater (6 or 8 pole) induction type with a maximum synchronous speed of 1500 rpm, unless otherwise stated in the Data Sheet.
- rated IP68 for submerged operation, in accordance with AS1939,
- resistant to corrosive gases such as may be found in municipal sewers (e.g. methane, hydrogen sulphide),
- suitable for direct-on-line and reduced-voltage starting, using either star delta, auto transformer, electronic soft starter/soft stop or VSD types and
- have an earthing terminal provided within the power supply terminal box.

The motor manufacturer shall be informed if the motor is to be used in conjunction with a VSD of PWM type so that the manufacturer can take into account the increased level of harmonic currents and the increased voltage stress on the insulation. Motor windings shall have an impulse withstand voltage rating and a dV/dt rating engineered to the characteristic output of the VSD and the length of cable between the motor and VSD. Furthermore, the motor manufacturer and remedial measures taken to offset any detrimental effects shall take the effects of common mode currents flowing through the bearings into account.

The locked rotor current shall not exceed a maximum of 7 times the rated full-load current.

Although submersible pumps are not subject to the new legislation relating to high efficiency motors, South East Water selects pumps based on Whole Of Life Costs, and therefore urges all suppliers of submersible equipment to embrace the legislation and supply high efficiency submersible motors.

Housing

The motor housing shall be designed to withstand submergence to a depth of 20 metres head without leakage. The motor casing shall incorporate lifting brackets or lifting eyes to AS2317 for ease of installation. The pump unit when suspended shall hang vertically at an attitude enabling easy engagement/disengagement of the pump onto the pump pedestal mounting claw and sealing face.

Cooling

The motor shall be designed and adequately rated to operate in air with convective cooling, i.e. without additional cooling effect due to immersion in the fluid.

Motors shall be rated to not overheat during continuous operation under any hydraulic conditions, including non-submerged conditions.

Protection

The motor shall be protected from overheating by either:

- a minimum of one (1) positive temperature coefficient (PTC) thermistor, embedded in each of the three (3) stator windings. Each thermistor to be connected in series to terminals adjacent to the stator terminals and encapsulated and compatible with the motor selected or
• resistance temperature detector (RTD) elements (100%).

Alternative protection devices will be considered provided anecdotal evidence is available from 3rd party users as to their suitability.

A moisture detection device shall be fitted in the motor stator housing, and the cable termination housing if fitted.

Insulation

Winding insulation temperature rating shall be not less than that specified as Class F to AS2768.

Cables & Motor Entry Glands

Cables shall be flexible, multi-core, insulated, sheathed and suitable for immersion in industrial as well as domestic sewage. Cables shall comply with AS5000.1.

The contractor shall ensure that cables are configured to support the starting method referred to in the Technical Data Sheets.

Cables incorporating additional cores for RTD / thermistor protection and moisture detection shall have the additional cores provided with secondary sheaths.

All cables entering the motor are to be glanded to a single demountable flange.

The length of electrical cable required for each motor shall be 15 meters unless stated differently in the Technical Data Sheet.

Motors specified for VSD operations shall have screened cables with no less than 85% optical screening.

Bearings

The motor bearings shall be:

• of metric dimensions,
• fully sealed and pre-greased,
• designed for a L10 Rating Fatigue Life of at least 70,000 hours at the maximum operating speed and
• be stocked in Melbourne by specialist bearing suppliers.

Bearing mountings shall be designed to allow for variations in shaft temperature. Thrust bearings shall be fitted to take all axial loads due to hydraulic thrust.

Protective Coatings & Surface Treatments

The pump design shall be such that the corrosion protection is fully effective for all surfaces exposed to sewage or sewer gases. All surfaces that cannot be coated and tested shall be of corrosion resistant material.

The design of all components shall be such that a polymer coating can be applied and tested fully for conformity with AS4158. The coating shall be continuous across the full width of all joints, gaskets and seals.

Surface coatings shall be applied after all hydrostatic testing has been completed.

Auxiliary items, unless they are manufactured from corrosion resistant materials, shall be hot-dip galvanized to AS4680 or coated with a protective coating to AS4158.
ANCILLARY ITEMS

Discharge Support

If specified in the Technical Data Sheets, each pump intended for wet well service shall be supplied with a discharge support designed with the following features:

- a support foot suitable for bolting to the pump well floor, capable of resisting all static and dynamic loads induced by the pump and discharge pipe work.
- a de-coupling 'duck-foot' joint able to be manipulated from the top of the pump well by lifting or lowering the pump, without the need of special devices, and able to maintain a leakage free seal between pump and pipe work during all operational conditions.
- an anchor point for mounting of vertical guide rail, located to ensure that the pump can be raised and lowered in the pump well without lateral deviation and
- a vertical flanged discharge port

Guide Rails

As specified in the Technical Data Sheets the pump shall also be supplied with guide rails to suit the standard dimensions for the pump pedestal. The guide rails shall be designed to permit the pump to slide freely and seat correctly when lowered into the working position.

Brackets

If specified in the Technical Data Sheets brackets shall be provided to support and attach the guide rails to the wet well wall. Each pump shall be supplied complete with:

- a top mounting guide rail brackets and
- intermediate mounting guide rail brackets suitable for connection to discharge pipe work
- flanges. The brackets shall be sufficient in number to ensure excessive loads are not placed on the guide rails, but not less than required for 3.0 metre centres.

Suction Bend & Mounting Stool

The suction bend shall be manufactured from the same material as the pump.

The mounting stool shall be manufactured from cast iron (grade as per the pump volute) or stainless steel in accordance with AS1444, grade 316L.

Bolts, Screws & Dowels

All bolts, nuts, studs and screws shall be manufactured from materials that are electrolytically compatible with the components being secured and shall be designed to comply with AS1111 and AS1112. Stud bolts shall not be used unless required for tapped holes.

Flanges

Suction and discharge branches shall have a pressure rating not less than the pressure rating of the casing.
Discharge flanges shall be drilled to AS 2129 Table 'E'.

21 November 2018
Pipe flanges shall comply with the requirements of AS4087, for sizes within the range covered by the appropriate table, and shall be machined full face or include an ‘O’ Ring groove or a raised face as listed in the Technical Data Sheet.

Pipe flanges sizes and rating outside the scope of AS4087, or flanges requiring special dimensions and drilling to match existing pipe work, shall have: -

- Flange dimensions, face sealing and drilling as detailed in the Technical Data Sheet.
- Flange thickness determined by the Contractor in accordance with AS1210. In other respects AS4087 shall apply.

The backs of flanges shall be machined or spot faced for the seating of bolts and nuts.

Nameplates

A nameplate manufactured from stainless steel to AS1449, grade 316 and shall be affixed to the body of the pump unit by means of suitable stainless steel screws. The nameplate shall be stamped or engraved with the following information: -

- Model / Type Descriptor
- Serial Number
- Rated Speed & Direction Of Rotation
- Duty Point
- Impeller Diameter (fitted)
- kW Rating
- Voltage
- Locked Rotor & Full Load Current
- Power Factor
- Class Of Insulation
- Degree Of Protection
- Total Weight
- Date Of Manufacture

A second identical nameplate shall be supplied loose.

Motors with thermistors or RTD’s fitted shall be supplied with (loose) warning labels;

WARNING: THERMISTORS OR RESISTANCE TEMPERATURE DETECTORS INSTALLED, DO NOT MEGGER.

MANUFACTURING

Materials

General

Where a specific material for a component has not been stated in this document, materials for manufacture shall be as listed in the Technical Data Sheet.

Preferred Material Grades – Castings

Preferred grades for cast materials stated in the Data Sheet are: -

- Grey Cast Iron AS1830, grade T220 or better.
- Austenitic Iron AS1833, grade S-Ni Cr 20 2.
- Stainless Steel AS2074, grade H6C.
- Carbon Steel Not a preferred material.
- Spheroidal Graphite Not a preferred material.
Alternative materials with a proven history of reliable service to those stated in 1 to 3 above will be considered as an alternative to those specified. The responsibility lies with the supplier to prove to South East Water that the materials offered, will provide the same or better reliability than the materials specified.

Castings shall be close and uniform in grain, homogeneous and free from blowholes, porosity, shrinkage, cracks and other injurious defects. Filling of holes shall not be permitted unless allowable under Australian Standards. Castings shall be properly cleaned and fettled and all lumps and rough areas smoothed.

Stainless Steel

Stainless steel plate and bar subjected to welding during the manufacture of any component shall be a low carbon and stabilized grade such as AS1449, grade 316L. All welding shall have passive treatments carried out once the fabrication is completed.

Stainless steel casings shall be a stabilized grade in accordance with AS2074, grade H6C. Stainless steel in shafts, spindles or similar shall comply with AS1449, grade 316 or better. Graphite greases, graphite packing and graphite compounds shall not be used in contact with stainless steel.

Mild Steel

Mild steel shall conform to AS3679.1, grade 250.

Seals

Material for seals, other than mechanical seals, shall be natural rubber, synthetic polyisoprene or a mixture of natural rubber and nitrile rubber. The rubber hardness shall be as required by the seal design for the pressure specified and, if required, shall be reinforced with Kevlar fabric.

Subject to the approval of South East Water, other elastomers with durability and mechanical properties at least equivalent to the materials specified may be substituted.

“O” Rings

“O” Rings for flanges shall comply with AS4087. “O” Ring sealing components shall comply with the relevant sections of AS1646 and AS2842.

Machining

Machining shall be concentric, square to line and true. All sharp edges and burrs shall be removed. Bolt holes shall be drilled and spot faced for bolt head and nut. Mating parts shall be match marked. All components and the assembled rotating element shall be interchangeable for pumps of the same type, designation and size.

Bosses shall be provided for all tapings. The use of setscrews in castings shall be avoided. Dowels shall be provided between components requiring accurate locating in position.

INSPECTION AND TESTING

Materials

The Contractor shall carry out material testing as required in the Technical Data Sheet.
All materials testing shall be carried out by a testing laboratory accredited by the National Association of Testing Authorities (NATA) for the class of test being undertaken, and, if required, shall be witnessed by a representative of South East Water.

Materials and/or components specified as requiring testing shall not be used in the work without prior approval of South East Water.

Workshop Assembly

If specified in the Technical Data Sheets that works inspection(s) is/are required to be carried out by South East Water, the pump unit shall be progressively assembled in the Contractor’s works in such a way that the fitting of all parts and all essential movements can be checked.

Type Tests

The Contractor, if requested to do so, shall provide ‘Type Test Certificates’ for type and size of submersible pump supplied. Where ‘Type Test Certificates’ are not available the Contractor shall perform and document type tests at the Contractors works on the first submersible pump of each design. Type tests shall include the following minimum requirements:

- temperature rise,
- momentary overload,
- high voltage,
- efficiency,
- power factor,
- DOL locked rotor starting current and
- DOL locked rotor torque.

Flow, head, power, vibration (if feasible), and other required parameter measurements shall be taken at several flow rates to provide definable smooth curves for Head, Efficiency, Pump Absorbed Power and Motor Electrical Power (all versus Flow Rate) extending from zero flow to the maximum achievable flow required. The test flow rates shall include:

- zero flow,
- the guarantee point,
- any secondary duty points,
- maximum achievable flow.

If required by the Technical Data Sheet, tests to determine the pump’s NPSHR shall be conducted. NPSHR testing shall be carried out at a minimum of five (5) flow rates, equi-spaced between zero flow and the maximum achievable flow (one point to include the latter flow).

The performance of each pump shall be tested using the motor to be supplied under the contract.

All tests shall be conducted in accordance with AS2417, AS1359.109 and AS1359.114 as applicable and may be witnessed by a South East Water representative. The Contractor shall give a minimum of three (3) working days notice of commencement of tests.

An interim copy of the test sheets shall be submitted to South East Water immediately following the tests.
SITE PERFORMANCE/COMMISSIONING TESTS

Test Requirements
The Contactor shall, if requested in the Technical Data Sheets, carry out site based performance/commissioning tests to demonstrate the suitability of the pump unit for the intended service. The tests shall include:

- checks for mechanical damage to the pump unit, including corrosion protection systems,
- demonstration of the mechanical operation of raising and lowering apparatus,
- electrical integrity of cabling and motor,
- measurements of flow, head and power at flows approximating those used for the works tests,
- checks for formation of vortices at minimum submergence,
- checks for excessive vibration at minimum submergence, and
- checks for excessive noise.

An interim copy of the test sheets shall be submitted to South East Water immediately following the tests.

Test Officer
The Contactor shall nominate a test officer for the duration of the tests, who shall be responsible for:

- the submission of the Test Plan, Procedures & Method Statements,
- the conduct of the tests,
- recording / analysis of results and
- the submission of the Contractor’s Test Report to South East Water for acceptance. Unless stated otherwise in the Technical Data Sheets the Contactor shall provide all test instruments, excepting flow meters. All instruments shall be calibrated by a NATA certified testing authority as required by the Australian Standards.

Analysis & Presentation Of Test Results
Comparisons between test results and guaranteed performance will be made in accordance with AS2174 and AS1359.33.

Rejection of Pump Units
South East Water may reject the pump unit should the performance during works tests:

- fall outside the specified limits for the guarantee point or secondary duty points,
- fail to operate at the maximum achievable flow,
- fail to meet the guarantees for NPSHR or vibration and
- indicate poor mechanical or electrical design or manufacture.

South East Water may reject the pump unit should the Contractor not satisfy South East Water during pre-commissioning, that the pump unit meets the specified service requirements.

Warranty Period
Any defects developed within a period of twelve (12) months from the date of commissioning, or 18 months from delivery whichever the sooner, other than fair wear and tear, shall be rectified by the Contractor on receipt of notice from South East Water and at no cost to South East Water.
PACKING, TRANSPORTATION & DELIVERY

Labels & Markings
All items shall be individually labelled prior to packing. Labels shall include the following information:
- Property of South East Water
- Contact Number
- Item / Part Number

Where items are manufactured for specific mating component parts, they shall all bear individual identification numbers and reference to the mating part identification numbers.

Packing
All items shall be individually packaged for long-term storage in a tropical environment, with external labelling.

Crating of items for transportation shall be designed and constructed to withstand the loads imposed during transportation. Goods received in damaged packaging or crating may be returned to the Contractor for re-manufacture and/or re-inspection and testing.

Crates shall be clearly marked in black-stencilled lettering with the following information:
- Consignee’s name and delivery address as given in the Contract,
- Consignor’s name and contact point and contact number.

SPARE PARTS & TOOLS
The Contractor shall supply and deliver one (1) complete set of any special tools required for the dismantling, service and re-assembly of the pump unit.

DOCUMENTATION
The Contractor shall prepare and supply drawings, installation, operation and maintenance documentation.

The manuals and technical data sheets shall fully describe all specified equipment and clearly show its mode of operation and, as a minimum, contain the following information:
- a concise description of each pump type and ancillary equipment, together with a complete performance specification,
- a concise description of the mode of operation of each part or sub-system,
- procedures for installation and commissioning of each part or sub-system,
- procedures to be followed for testing, maintenance and fault finding. The fault finding table shall list fault indication, possible causes and remedies.
- special precautions to be taken in replacement and/or adjustment of each item,
- a comprehensive routine maintenance and testing program based on that recommended by the manufacturer,
- a spare parts list for all items plus component assembly drawings of the pump and ancillary equipment,
- a list of supplier’s names and addresses to enable any parts to be ordered correctly,
- any other information or instructions necessary to fully operate and maintain the equipment in a complete and satisfactory manner and
- a set of pump assembly drawings on CD format.
TECHNICAL DATA SHEETS

NOTE:
If the pumps being quoted are fully described in a catalogue that the consultant has previously handed to a mechanical engineer at South East Water / „us” – Utility Services you only need to specify the complete model number; there is no need to also fill in the Technical Data Sheets attached to this Appendix unless the information is not described in the pump catalogue.

Project Title: ________________________________

Pump Descriptor: ________________________________

Section 1 - General

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Manufacture’s Name</td>
</tr>
<tr>
<td>1.2</td>
<td>Manufacture’s Address</td>
</tr>
<tr>
<td>1.3</td>
<td>Model Number</td>
</tr>
</tbody>
</table>

Section 2 – Pump Hydraulic Design

<table>
<thead>
<tr>
<th></th>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mounting Arrangement (Dry/Wet Well)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Suction Eye Area</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Impeller Free Passage</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Impeller Diameter</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Fitted</td>
<td></td>
</tr>
<tr>
<td>2.4.2</td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>2.4.3</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Minimum Submergence</td>
<td></td>
</tr>
</tbody>
</table>

Section 3 – Pump Mechanical Design

<table>
<thead>
<tr>
<th></th>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Casing</td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>Volute Type (single/double)</td>
<td></td>
</tr>
<tr>
<td>3.1.2</td>
<td>Suction Port Diameter</td>
<td></td>
</tr>
<tr>
<td>3.1.3</td>
<td>Discharge Port Diameter</td>
<td></td>
</tr>
<tr>
<td>3.1.4</td>
<td>Material</td>
<td>Flake Graphite Cast</td>
</tr>
<tr>
<td>3.2</td>
<td>Casing Wear Ring</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>3.2.2</td>
<td>Surface Hardness</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Fixing Method/Material</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Casing Fixings</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Bolt/Stud Material</td>
<td>Stainless Steel to AS1444, Grade 316</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Nut Material</td>
<td>Stainless Steel to AS1444, Grade 316</td>
</tr>
<tr>
<td>3.4</td>
<td>Impeller</td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>3.4.2</td>
<td>Clearing Vanes Fitted?</td>
<td>Yes</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Material</td>
<td>Flake Graphite Cast Iron to AS1830</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Attachment Method</td>
<td></td>
</tr>
<tr>
<td>3.4.5</td>
<td>Retention Method</td>
<td></td>
</tr>
<tr>
<td>3.4.6</td>
<td>Locknut Material</td>
<td>Stainless Steel to AS1444, Grade 304</td>
</tr>
<tr>
<td>3.5</td>
<td>Impeller Sealing Ring(s)</td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>3.5.2</td>
<td>Surface Hardness</td>
<td></td>
</tr>
<tr>
<td>3.5.3</td>
<td>Fixing Method/Material</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Wear Plate</td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>3.6.2</td>
<td>Fixing Method/Material</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Shaft</td>
<td></td>
</tr>
<tr>
<td>3.7.1</td>
<td>Material</td>
<td>Stainless Steel to AS1444, Grade 316</td>
</tr>
<tr>
<td>3.8</td>
<td>Mechanical Seal</td>
<td></td>
</tr>
<tr>
<td>3.8.1</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>3.8.2</td>
<td>Arrangement</td>
<td></td>
</tr>
<tr>
<td>3.8.3</td>
<td>Manufacturer</td>
<td></td>
</tr>
<tr>
<td>3.8.4</td>
<td>Model Nr</td>
<td></td>
</tr>
<tr>
<td>3.8.5</td>
<td>Rotating Surface Material</td>
<td>Silicon Carbide/Graphite</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Stationary Face Material</td>
<td>Silicon Carbide /Tungsten Carbide</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Spring(s) Material</td>
<td></td>
</tr>
<tr>
<td>3.8.8</td>
<td>Elastomer Material</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Seal Chamber</td>
<td></td>
</tr>
<tr>
<td>3.9.1</td>
<td>Material</td>
<td>Flake Graphite Cast Iron to AS1830</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Oil Filling Point Incorporated?</td>
<td>Yes</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Drain Point Incorporated?</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Section 4 – Motor Electrical Design

<table>
<thead>
<tr>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Power Supply</td>
<td>415V / 3ph / 50Hz</td>
</tr>
<tr>
<td>4.2 Rating (kW)</td>
<td></td>
</tr>
<tr>
<td>4.3 Poles</td>
<td>4</td>
</tr>
<tr>
<td>4.4 Efficiency</td>
<td></td>
</tr>
<tr>
<td>4.4.1 Full Load (%)</td>
<td></td>
</tr>
<tr>
<td>4.4.2 ¼ Load (%)</td>
<td></td>
</tr>
<tr>
<td>4.4.3 ½ Load (%)</td>
<td></td>
</tr>
<tr>
<td>4.5 Power Factors</td>
<td></td>
</tr>
<tr>
<td>4.5.1 Full Load</td>
<td></td>
</tr>
<tr>
<td>4.5.2 ¼ Load</td>
<td></td>
</tr>
<tr>
<td>4.5.3 ½ Load</td>
<td></td>
</tr>
<tr>
<td>4.6 Locked Rotor</td>
<td></td>
</tr>
<tr>
<td>4.6.1 Torque (Nm)</td>
<td></td>
</tr>
<tr>
<td>4.6.2 Current (A)</td>
<td></td>
</tr>
<tr>
<td>4.7 Full Load</td>
<td></td>
</tr>
<tr>
<td>4.7.1 Speed (rpm)</td>
<td></td>
</tr>
<tr>
<td>4.7.2 Torque (Nm)</td>
<td></td>
</tr>
<tr>
<td>4.7.3 Current (A)</td>
<td></td>
</tr>
<tr>
<td>4.8 Protection</td>
<td></td>
</tr>
<tr>
<td>4.8.1 PTC</td>
<td>Yes</td>
</tr>
<tr>
<td>4.8.2 RTD</td>
<td>No</td>
</tr>
<tr>
<td>4.8.3 Moisture Protection</td>
<td>Yes</td>
</tr>
<tr>
<td>4.9 Motor Cables</td>
<td></td>
</tr>
<tr>
<td>4.9.1 Type</td>
<td></td>
</tr>
<tr>
<td>4.9.2 Additional Cores</td>
<td></td>
</tr>
<tr>
<td>4.9.3 Demountable Flange</td>
<td></td>
</tr>
<tr>
<td>4.9.4 Length (m)</td>
<td>15</td>
</tr>
</tbody>
</table>

Section 5 – Motor Mechanical Design

<table>
<thead>
<tr>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Insulation</td>
<td>Class F</td>
</tr>
</tbody>
</table>
Section 6 – Inspection & Testing

<table>
<thead>
<tr>
<th></th>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Materials</td>
<td>Yes</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Composition Certificates</td>
<td>No</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Composition Tests</td>
<td>No</td>
</tr>
<tr>
<td>6.1.3</td>
<td>NDT</td>
<td>No</td>
</tr>
<tr>
<td>6.3</td>
<td>Assembly Inspections</td>
<td>No</td>
</tr>
<tr>
<td>6.4</td>
<td>Performance</td>
<td>Yes, Over 22kW</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Motor Tests</td>
<td>Yes, Over 7.5kW</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Pump Tests</td>
<td>C</td>
</tr>
<tr>
<td>6.4.4</td>
<td>NPSHR (m)</td>
<td>No</td>
</tr>
<tr>
<td>6.5</td>
<td>Commissioning</td>
<td>No</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Site Performance Tests</td>
<td>No</td>
</tr>
<tr>
<td>6.5.2</td>
<td>System Commissioning</td>
<td>No</td>
</tr>
</tbody>
</table>

Section 7 – Ancillary Equipment

<table>
<thead>
<tr>
<th></th>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Discharge Support Bend</td>
<td>Yes</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Material</td>
<td>Flake Graphite Cast Iron to</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Discharge Flange Rating</td>
<td>AS4087, Class 16</td>
</tr>
<tr>
<td>7.2</td>
<td>Lifting Guides</td>
<td>No</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Type</td>
<td>No</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Material</td>
<td>No</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Size</td>
<td>No</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Top Bracket Material</td>
<td>Flake Graphite Cast Iron to AS1830</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Intermediate Bracket Material</td>
<td>No</td>
</tr>
<tr>
<td>7.3</td>
<td>Suction Bend</td>
<td>No</td>
</tr>
</tbody>
</table>
Section 8 - Documentation

<table>
<thead>
<tr>
<th>Required</th>
<th>Tendered</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Certified Drawings</td>
<td></td>
</tr>
<tr>
<td>8.1.1 General Arrangement</td>
<td>Within 2 Weeks of Placement of Order</td>
</tr>
<tr>
<td>8.1.2 Sectional Arrangement</td>
<td>Within 2 Weeks of Placement of Order</td>
</tr>
<tr>
<td>8.2 Certificates</td>
<td></td>
</tr>
<tr>
<td>8.2.1 Materials</td>
<td>Prior To Delivery</td>
</tr>
<tr>
<td>8.2.2 Hydrostatic</td>
<td>Prior To Delivery</td>
</tr>
<tr>
<td>8.2.3 Performance</td>
<td>Prior To Delivery</td>
</tr>
<tr>
<td>8.3 Operation & Maintenance Manuals</td>
<td>Prior To Delivery</td>
</tr>
</tbody>
</table>

Section 9 – Spare Parts & Tools

<table>
<thead>
<tr>
<th>Tenderer to List Items to be included in the Tender</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Spare Parts & Tools</td>
</tr>
</tbody>
</table>
Performance Sheet

Project Title: ___

Pump Descriptor: __

<table>
<thead>
<tr>
<th></th>
<th>Guarantee Point</th>
<th>Secondary Duty 1</th>
<th>Secondary Duty 2</th>
<th>Secondary Duty 3</th>
<th>Maximum Achievable Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required</td>
<td>Offered</td>
<td>Required</td>
<td>Offered</td>
<td>Required</td>
</tr>
<tr>
<td>Flow Rate (l/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPSHR (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency – Pump (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency – Motor (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWh/1000litres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pump Submission Sheet

<table>
<thead>
<tr>
<th>Item</th>
<th>Required Information</th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Impeller Dia Short Term 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Impeller Dia Ultimate 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Throughput size (Sphere Clearance) Impeller 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Throughput size (Sphere Clearance) Impeller 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Pump Efficiency Short Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Pump Efficiency Ultimate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Motors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Rating (shaft power)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Current – full load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Current - start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Starter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Motor Efficiency at full load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Motor Efficiency at 3/4 load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Motor Efficiency at 1/2 load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Maximum Permissible Starts per hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Weight of complete unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Lifting equipment (Chain and Shackles grade etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Discharge pipework diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Pump width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Pump length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Minimum Pump Separation Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum Well diameter required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Recommended minimum access opening for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Short term supply costs (excl GST)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Ultimate supply cost – 2 new impellers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Minimum Submergence for pump</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial Duty Point Operation

<table>
<thead>
<tr>
<th></th>
<th>Running current at duty point - Amps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shift KW at duty point</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>% of Motor Rated Power at Duty Point</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Overall Efficiency at Duty Point</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BEP flow at Duty Point</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>% of BEP flow at duty point (must be between 55%)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Expected pump life at BEP in hrs</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Expected pump life at This Duty Point in</td>
<td></td>
</tr>
</tbody>
</table>

Final Duty Point Operation

<table>
<thead>
<tr>
<th></th>
<th>Running current at duty point - Amps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Shift KW at duty point</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>% of Motor Rated Power at Duty Point</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Overall Efficiency at Duty Point</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>BEP flow at Duty Point</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>% of BEP flow at duty point (must be between 55%)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Expected pump life at BEP in hrs</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Expected pump life at This Duty Point in</td>
<td></td>
</tr>
</tbody>
</table>

Costs

<table>
<thead>
<tr>
<th></th>
<th>Cost of Major repair from seal failure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Estimated Maintenance and Repair Costs Based on 25% run time p.a. (3 hrs per day for each pump) and 1100 hrs per year</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Year 1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Year 2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Year 3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Year 4</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Year 5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Year 6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Year 7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Year 8</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Year 9</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Year 10</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Year 11</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Year 12</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Year 13</td>
<td></td>
</tr>
</tbody>
</table>

Analysis by South East Water

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEW Required motor efficiency under AS1359.102.2</td>
</tr>
<tr>
<td>SEW Pump Cost ($/hr) based on life of 15 years</td>
</tr>
<tr>
<td>SEW ADWF (assume = PWWF/6) L/s</td>
</tr>
<tr>
<td>SEW Operate how often (x minutes / day) at ADWF</td>
</tr>
<tr>
<td>SEW Electricity Cost (@ $0.18/kWhr)</td>
</tr>
<tr>
<td>SEW Power Cost over 1 yr</td>
</tr>
<tr>
<td>SEW Power Cost over 15 yrs</td>
</tr>
<tr>
<td>SEW Extra Cost to cheapest pump to run over 15 yrs</td>
</tr>
<tr>
<td>SEW Operation per day at ADWF (Hrs)</td>
</tr>
<tr>
<td>SEW Hrs per year</td>
</tr>
<tr>
<td>SEW Cost per KwHr</td>
</tr>
<tr>
<td>SEW Power consumption at Duty Point (Kw)</td>
</tr>
<tr>
<td>SEW Cost to run pump per year (ignoring starting</td>
</tr>
<tr>
<td>SEW Running costs for 15 years</td>
</tr>
<tr>
<td>SEW Running Costs Difference over 1 year</td>
</tr>
<tr>
<td>SEW Running Costs Difference over 15 years</td>
</tr>
<tr>
<td>SEW Difference in purchase price ($)</td>
</tr>
<tr>
<td>SEW Break-Even (years)</td>
</tr>
</tbody>
</table>

Power Cost per KWhr 0.18
APPENDIX B - DESIGN CHECKLIST

Design Audit for Sewerage Pumping Station and Pressure Main.

<table>
<thead>
<tr>
<th>Item</th>
<th>Complete</th>
<th>Date / Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET WELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Design Capacity minimum 2hr @ PDWF provided. Clause 4.5.5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Computations for flotation confirm minimum FS of 1.1. Clause 4.4.3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Coating of concrete surfaces specified Clause 4.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Top slab to incorporate all below ground structures. Clause 4.5.3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Wet well shall be self draining. Clause 4.5.3.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Covers in accordance with Clause 4.5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Minimum wet well diameter complies. Clause 4.5.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Cut in Cut out volumes comply. Clause 4.5.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Wet Well washers comply. Clause 4.5.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Concrete strength specified. Clause 4.5.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Clearance from overhead power lines. Clause 4.7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Ladders comply with standard Drawing SEW_STD_005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Penstock complies. Clause 4.5.1.2 and Standard Drawing SEW_STD_000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Pipe work complies. Clause 4.6.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Pipe supports comply with standard drawing SEW_STD_002 and clause 4.6.3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Pump well inlet pipe complies with clause 4.5.2.1(h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Computations for pump selection inclusive of NPV. Clause 4.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Approved pumps. Clause 4.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY RELIEF STRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complies with Standard drawing SEW_STD_061 and clause 4.5.5.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALVE CHAMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Pit Accessible. Clause 4.6.3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pipe supports comply with. Clause 4.6.3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Pressure main tapping’s in accordance with Clause 4.6.3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ladders comply with standard drawing SEW_STD_005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Operation of valves without need to remove cover. Clause 4.6.3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Chamber is self-draining. Clause 4.6.3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Valves Clockwise closing. Clause 4.6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Pipework and fittings comply with Clause 4.6.4.8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFRASTRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Water supply in accordance with clause 4.8.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Lighting in accordance with clause 4.8.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Access Road in accordance with clause 4.7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Bollards in accordance with clause 4.5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Switchboard location complies with clause 4.7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Termination of generator connectors comply with clause 4.3.4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Telemetry mast complies with clause 4.4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Site drainage complies with clause 4.8.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSURE MAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Minimum pipe class as per clause 4.6.4.8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Computations verifying velocity complies with clause 3.5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Discharge MH copies with clause 4.6.8</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Air valve complies with clause 4.6.2 & 4.6.5.2 and standard drawing SEW_STD_060</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Scour Valve assembly complies with standard drawing SEW_STD_060</td>
<td></td>
</tr>
</tbody>
</table>

.../....
APPENDIX C - SUBMISSION OF PRECOMMISSIONING DOCUMENTATION

SOUTH EAST WATER PRE-COMMISSIONING CHECKLIST FOR NEW WASTE WATER SITES

Requirements by Contractor
The following checklist is required to be fully completed, signed and returned to South East Water before a joint commissioning is scheduled.

Please note: in the event of a commissioning being abandoned due to works not completed or operational, South East Water will recover costs incurred.

STATION NAME: ____________________________
STATION NUMBER: ________________________

Supply Authority Power available: Yes ☐ No ☐
Provision of sufficient water for all testing purposes: Yes ☐ No ☐
Fresh water discharge flushing system operating as per design: Yes ☐ No ☐
Ancillaries (GPO’s, lighting etc) tested and working correctly: Yes ☐ No ☐
Telemetry radio survey completed satisfactorily: Yes ☐ No ☐
Station telemetry points list supplied: Yes ☐ No ☐
Established telemetry communications and verified inputs locally: Yes ☐ No ☐

Verification Of As Constructed Levels and Operation.
Note: Levels taken from well cover down

<table>
<thead>
<tr>
<th>Setting/Alarm</th>
<th>Measurement</th>
<th>Operational function (contractor to verify correct operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spill Alarm</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>H/L back up pump 2 start</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>H/L back up pump 1 start</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>High level alarm</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>H/L pump cut out/ Transfer</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Duty pump cut-in</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Duty pump cut out</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Low level alarm (indication only)</td>
<td>M</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Wet well level indicator</td>
<td></td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Level controller span</td>
<td>O-</td>
<td></td>
</tr>
<tr>
<td>Level controller datum</td>
<td>MAHD</td>
<td></td>
</tr>
</tbody>
</table>

Level settings according to design: Yes ☐ No ☐ NA ☐
APPENDIX D: PROCEDURE FOR PERFORMANCE TESTING OF PUMPS

Contractor to complete for all pumps:

- Ensure pressure main is fully charged prior to testing.
- If pump is VSD driven, operate at 50 Hz during pump testing
- Measure levels (stick & measuring tape) as well as record gauge levels
- Install temporary pressure gauge at valve pit for measuring Hs (static head) and Ht (total head)
- Undertake quick shut head test and record pressure prior to testing actual pump duty

<table>
<thead>
<tr>
<th>Var</th>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date of Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pump Make & Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pump Serial Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pump No (position)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated motor power</td>
<td>kW</td>
</tr>
<tr>
<td>I</td>
<td>Measured steady state current (operating) – if ammeter</td>
<td>A</td>
</tr>
<tr>
<td>P_a</td>
<td>Measured steady state electrical power delivered (1 pump operating)</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>This may be taken from the electricity company meter if there is no power or current metering at soft starter or VSD display.</td>
<td></td>
</tr>
<tr>
<td>Hmax</td>
<td>Measured Shut head (when delivery valve closed)</td>
<td>m</td>
</tr>
<tr>
<td>Hmax</td>
<td>Theoretical Shut Head</td>
<td>m</td>
</tr>
<tr>
<td>t</td>
<td>Time to pump (b/w cut in & cut out)</td>
<td>s</td>
</tr>
<tr>
<td>L1</td>
<td>Pump Start level (measured at pump start)</td>
<td>m</td>
</tr>
<tr>
<td>L1</td>
<td>Pump Start level (level gauge)</td>
<td>m</td>
</tr>
<tr>
<td>L2</td>
<td>Pump Stop level (measured at pump stop)</td>
<td>m</td>
</tr>
<tr>
<td>L2</td>
<td>Pump Stop level (level gauge)</td>
<td>m</td>
</tr>
<tr>
<td>D</td>
<td>Measured well inside diameter</td>
<td>m</td>
</tr>
<tr>
<td>V</td>
<td>Operating Volume, $V = \pi D^2/4 \times \text{,(L1-L2)}$</td>
<td>m³</td>
</tr>
<tr>
<td>Qc</td>
<td>Calculated average flow rate, $Q_c = V/t$</td>
<td>l/s</td>
</tr>
<tr>
<td>Qm</td>
<td>Measured flow rate (from flow meter)</td>
<td>l/s</td>
</tr>
<tr>
<td>Hc</td>
<td>Head correction factor = elevation difference b/w pressure gauge and mid operating level (L1-L2)/2</td>
<td></td>
</tr>
<tr>
<td>H_{sm}</td>
<td>Measured Static Head (no pumps operating) (from pressure gauge when pressure main full)</td>
<td>m</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>H_s</td>
<td>Static Head, H_s = H_{sm} + H_c</td>
<td>m</td>
</tr>
<tr>
<td>H_{tm}</td>
<td>Measured Total Head (one pump operating)</td>
<td>m</td>
</tr>
<tr>
<td>H_t</td>
<td>Total Head, H_t = H_{tm} + H_c</td>
<td>m</td>
</tr>
<tr>
<td>P_h</td>
<td>Hydraulic Power, P_h = 0.0098 x Q_c x H_t</td>
<td>kW</td>
</tr>
<tr>
<td>I</td>
<td>Measured steady state current (operating) – if ammeter available (check soft starter / VSD display)</td>
<td>A</td>
</tr>
<tr>
<td>P_e</td>
<td>Electric Power (from electricity meter, power meter or ammeter-measured electrical power delivered while 1 pump operating. This may be taken from the electricity company meter if there is no power or current metering at soft starter or VSD display. P_e = 3^{0.5} x V_L x I (if using ammeter)</td>
<td>kW</td>
</tr>
<tr>
<td>E</td>
<td>Overall Efficiency = P_h/P_e x 100 (measured)</td>
<td>%</td>
</tr>
<tr>
<td>E_e</td>
<td>Expected Efficiency (from pump datasheet)</td>
<td>%</td>
</tr>
</tbody>
</table>

Test performed by: ____________________________

Pressure gauges calibrated according to QA requirements:
Yes ☐ No ☐

Pump performance satisfactory:
Yes ☐ No ☐

Pump performance results as compared to tender offer- satisfactory:
Yes ☐ No ☐

General Contractor Comments:

__
__
__
__

All information has been supplied and verified ready for Commissioning

/ /
____________________ ______________________ Signed (Contractor) Date

____________________ Print name

Note: The telemetry is to be fully ready for commissioning day (refer South East Water supplementary manual for requirements)
South East Water use only

Level information and Operational function satisfactory: Yes ☐ No ☐
Pump performance results as compared to tender offer satisfactory: Yes ☐ No ☐
Pump motor information readings satisfactory: Yes ☐ No ☐
Telemetry commissioned satisfactorily: Yes ☐ No ☐

General South East Water Comments:

__

__

__

__

All information has been supplied and verified at Contractor Pre-commissioning

/ /

-------------------- Signed (South East Water) Date

------------------------------- Print name
APPENDIX E - EPA PROTOCOL

EMERGENCY RELIEF STRUCTURE PROTOCOL

SOUTH EAST WATER LIMITED AND ENVIRONMENT PROTECTION AUTHORITY

BACKGROUND
As a continuation of the Memorandum of Understanding (MoU) signed between Melbourne Water (MW) and Environment Protection Authority (EPA) in 1994, a new MoU has been executed between the South East Water (SEW) on 1 February 1996. This demonstrates SEW’s commitment to Best Practice Environmental Management.

SEW and EPA acknowledged that - (a) in order to -
(i) ensure the occupational health and safety of SEW staff and contractors; (ii) safeguard public health and safety;
(iii) protect sewers and sewerage treatment plants from damage-

SEW is obliged to construct and maintain Emergency Relief Structures (ERS’s) at appropriate points in its sewerage system and to allow emergency releases from sewers through such Structures from time to time;

(b) SEW is not required to apply for work approvals or waste discharge licences under the Environment Protection Act 1970 for ERS’s designed only to operate in an emergency.

Section 4.2 of the MoU sets out the actions to be followed by the SEW before it decides to construct any ERS.

PURPOSE
The purpose of this Protocol is

- provide guidelines to internal SEW Design Engineers and Consulting Engineers employed by SEW or Developers to design sewerage systems to enable them to take all necessary steps needed to comply with Section 4.2 of the MoU in designing sewerage systems;
- establish appropriate consultative mechanisms and procedures and agreed principles to avoid delays; and,
- reflect a commitment to the Quality Assurance Principles in achieving efficient work practices.

GUIDELINES
Investigate Whether an ERS is required

The designer/consultant should show evidence that an exhaustive investigation has been carried out to determine whether an ERS is required to ensure that occupational health and safety, public health and safety, or the safety of the sewerage system is maintained.
Such evidence should include:

- design computations to demonstrate that uncontrolled spillage would take place in the system without the construction of an ERS;
- Longitudinal Section plans of the sewers and hydraulic grade lines showing the location/s of such uncontrolled spillage;
- plans showing alternative locations for the ERS;
- all relevant data used and any assumptions made in the design computations; and,
- any other information the designer/consultant deem relevant.

Investigate Alternative Means to Avert or Reduce the Risk of the Sewer Overflowing

The designer/consultant should show evidence that complete investigation has been carried out to consider all possible alternative means to avert or reduce the risk of the sewer overflowing. The designer/consultant should provide a complete description of all the options considered. Brief description of the methodology adopted in evaluating the options should also be provided together with the ranking of the options. The preferred option is to be selected and reasons for its selection should also be submitted.

Assess the Likely Impact upon the environment of any release from the ERS
In assessing the impact upon the environment of any release via the ERS, the designer/consultant should provide:

- a list of possible causes of spillage (pump failure, power failure, rising main burst, blockages etc) in the particular circumstance and the methods of overcoming them;
- computations for the estimated rates, duration and frequency of spillage via the proposed ERS;
- information regarding the type of overflow arrangement provided in the ERS and whether the pipe work has the effect of providing grease and solid retention facility and if so for what duration;
- a statement regarding the quality of the sewage in terms of its BOD and septicity;
- a statement whether the spillage can be prevented from spreading and contained for easy clean up;
- an assessment of the impact on the receiving waters of the spillage in terms of the expected dilution;
- an assessment of the impact on other properties; and,
- an assessment of the impact on the fauna and flora of the area.

Assess the Need to Incorporate Detention Facilities to Delay Spillage
The designer/consultant should assess the need to install a detention facility to delay discharges to the environment via the ERS.

Some of the situations for such a requirement would be:

- dry streams being used as receiving waters;
- very little dilution in the receiving waters;
- highly sensitive area just downstream of the ERS;
- spreading of the spillage cannot be contained for easy clean up;
- very septic sewage;
- pump station failure due to pump or power failure; and,
- rising main burst.

Detention facilities that are considered appropriate to the situation are:

- purpose built holding tanks/emergency storage facilities;
- storage capacity available within the sewer system upstream of the ERS; and,
- control volume within a pump well.
The designer/consultant should list the possible causes of spillage in the given situation and estimate:
- the rate and duration of spillage via the proposed ERS; and,
- the response time required to stop the spillage.

The designer/consultant should then consider alternative detention facilities appropriate for the particular situation and select the preferred facility and give reasons for such selection and provide:
- the volume of a holding tank/emergency storage facility to detain the spill for the duration of the estimated response time, if a holding tank is selected as the preferred detention facility;
- plans used to estimate the available storage capacity within the upstream sewerage system, if the latter is selected as the preferred detention facility.

Where the control volume of the pump well is selected as the preferred detention facility, the pumping stations are to be designed in accordance with the SEW's design criteria. They are:
- no dry weather spills; and,
- the ability to transfer the flow generated from a 1 in 5 year storm event.

In order to achieve the above level of service, the pumping stations shall:
- be connected to a telemetry system, to notify a central location of fault conditions;
- have competent and current documentation for operating and maintenance procedures and systems;
- have a stand by pump installed in the wet well to provide backup should the duty pump fail; and,
- have at least a two hour storage capacity of Peak Dry Weather Flow(in the sewer system upstream and/or the wet well between high level alarm and the pumping station spill (ERS) level); OR
- have a by-pass pipe line.

In addition to the above requirements, for specific pumping stations of high criticality as nominated by SEW, the installation of a stand by/back-up electricity supply is mandatory. The provision of an additional electric feeder from a different bus in the electricity supply authority sub-station or an on site Diesel Alternator set would satisfy this requirement.

The designer/consultant should provide copies of design computations and plans for the pumping station.

Assess the Capacity of Sewers in the Catchment is Sufficient to Handle Likely Flows The designer/consultant should assess whether the capacity of the sewers in the relevant catchment is sufficient to handle likely flows.

Existing sewers will be deemed to have sufficient capacity where flows resulting from a 1 in 5 year rainfall event are contained. Contained means:
- flows in sewers greater than or equal to 300 mm diameter will be contained within the surcharge capacity; and,
- flows in sewers less than 300 mm diameter will be contained within the on grade capacity.

New and Rehabilitated Sewers must be able to contain flows resulting from a 1 in 5 year rainfall event for the design life of the system. Design must allow for increase in sewage flows from catchment development and upstream sewer system deterioration.
Capacity must be determined:
- using hydraulic modelling for sewers greater than or equal to 300 mm diameter; and,
- using Water Industry Technical Services Manual (WITS Manual) for sewers less than 300 mm diameter.
- The designer/consultant should provide copies of design computations and/or hydraulic models used for the purpose.
Discuss the Design and Location of the Proposed ERS with EPA

After completing all relevant steps appropriate for the particular situation from 3.1 to 3.5 above, the designer/consultant should forward to the Responsible Person (see Section 4 below) of SEW a complete set of computations, drawings and all other relevant materials together with a one page summary document detailing the investigations and findings. This summary document shall be forwarded by SEW to the Responsible Person of the EPA for information and comments, if appropriate.

The designer/consultant will allow a minimum of twenty one working days from the lodgement of the summary document with SEW before finalising the detail designs. The EPA may choose to make any comment/recommendations to SEW within ten working days of receiving the summary document. SEW will forward such comment/recommendations to the designer/consultant for consideration in the final detail designs.

A standard design component of all ERS’s is the installation of an electronic level recorder to monitor surcharge levels. Alarms from the recorder are directed via SEW’s telemetry system to alert the communications centre of any spillage via the structure.

Responsibility

The designer/consultant shall be responsible to carry out and complete all works in compliance with the SEW’s Quality System, ISO 9001, WITS Manuals and all other conditions as stipulated in the -offer made to the developer related to the particular development. Forwarding copies of the summary document, design computations, drawings, other relevant materials and the summary document as referred to in Section 3.6 shall in no way exonerate the designer/consultant from his obligations to carry out the work correctly and accurately and in compliance with the SEW’s Quality System, ISO 9001 and WITS Manuals.

The Responsible Persons for the purpose of this ERS Protocol for its duration are:

<table>
<thead>
<tr>
<th>Organisation</th>
<th>South East Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Mr Rex Dusting, Manager Sewerage Asset Planning</td>
</tr>
<tr>
<td>Location:</td>
<td>20 Corporate Drive, Moorabbin 3189</td>
</tr>
<tr>
<td>Telephone:</td>
<td>9 552 3739</td>
</tr>
<tr>
<td>Fax:</td>
<td>9 552 3625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisation</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Mr Andrew Dunn</td>
</tr>
<tr>
<td>Location:</td>
<td>45 Princes Highway, Dandenong</td>
</tr>
<tr>
<td>Telephone:</td>
<td>8710 5579</td>
</tr>
<tr>
<td>Fax:</td>
<td>9794 5188</td>
</tr>
</tbody>
</table>

Duration of the Protocol

This protocol is operative for the duration of the SEW/EPA Memorandum of Understanding.

Date of Issue

19 July 2002.

This version of the ERS Protocol supersedes all previous versions.
EXAMPLE

Emergency Relief Structure Protocol

IS AN ERS REQUIRED?

An ERS is required at the pumping station location for the following reasons:

- It is the lowest point on the sewage collection system;
- Possible spillages are a public health and safety hazard;
- To provide a controlled overflow for the system during extreme emergency situations;
- Detention storage is provided so that an overflow will only occur if no corrective action is performed.

Relevant ERS levels are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Relevant levels within Catchment (m AHD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invert level of lowest incoming sewer</td>
<td>31.6</td>
</tr>
<tr>
<td>Invert level of pump sump</td>
<td>30.3</td>
</tr>
<tr>
<td>Overflow level of ERS</td>
<td>37.25</td>
</tr>
<tr>
<td>Lowest manhole top level within catchment</td>
<td>38.3</td>
</tr>
<tr>
<td>(Located next to pumping station)</td>
<td></td>
</tr>
</tbody>
</table>

FACTORS THAT REDUCE THE RISK OF WASTEWATER OVERFLOWING

The following facilities have been included in the design of the scheme to reduce the risk of wastewater overflows:

- The pumping station well has been sized to provide detention storage.
- Standby pump for use during duty pump failure.
- Alarm facilities to warn operators of high wastewater levels.
- Rising main diameter no smaller than pump discharge.

IMPACT ON THE ENVIRONMENT

Possible causes of spillage are tabulated below:

<table>
<thead>
<tr>
<th>Types of Failure</th>
<th>Overcoming Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Failure</td>
<td>Standby pump available</td>
</tr>
<tr>
<td>Power Failure</td>
<td>Detention storage</td>
</tr>
<tr>
<td>Rising main Blockage</td>
<td>Detention storage</td>
</tr>
</tbody>
</table>

The peak dry weather flow (PDWF) for Stage 1 of the pumping station is estimated at 20L/s. The total detention storage required to provide 2 hours storage at PDWF is 144m³. (VERIFY WITH SOUTH EAST WATER MINIMUM STORAGE REQUIRED, CAN BE GREATER THAN 2HRS)

Additional detention storage will be added to the system as part of the future upgrades planned for this station.
The ERS for this station connects to the main pump well and overflows to the adjacent drain as shown on the attached plan. The effluent will have undergone the following treatment prior to discharge:

- Trapping of floatables and grease in the pump well and manholes.
- Detention in the pump well and manholes to enable settling of suspended solids.
- Trapping of solids in a 5mm mesh screen.

The partially treated sewage will then discharge to the floodway to the east of the pump station.

There are no alternative locations for the ERS which will provide the same level of public health and safety protection.

The pumping station will be monitored 24 hours a day via South East Water’s telemetry system. In the event of a spill, South East Water will take pre-planned action in accordance with an emergency plan which incorporates the following actions:

- Control any spill using eduction tankers;
- Contain the spill and initiate clean-up using appropriate labour and equipment;
- Monitor the effect of any spill;
- Report the spill to EPA within the criteria of South East Water’s sewer spillage checklist (SFS-SFG-146).

DETENTION FACILITIES

The design brief for the station requires a 2 hour detention storage volume at Peak Dry Weather Flow (PDWF).

The 2 hour storage volume has been established as the maximum time required for an operator to arrive at the pump station with mobile pump out facilities and to carry out repairs if necessary.

The storage system has not been designed for Peak Wet Weather Flows (PWWF). South East Water intend to provide Excess Storm Flow Facilities (ESFLOW) at a later date to detain the wet weather flows if the system becomes overloaded.

The detention storage exceeds the 2 hour PDWF requirement for Stage 1 as shown in the table below.

<table>
<thead>
<tr>
<th>Volume Cu.m.</th>
<th>Initial PDWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manholes 2Nos. 1800mm</td>
<td>28</td>
</tr>
<tr>
<td>Manholes 6Nos. 1500mm</td>
<td>57</td>
</tr>
<tr>
<td>Pump well</td>
<td>217</td>
</tr>
<tr>
<td>In line 533m of 600dia</td>
<td>151</td>
</tr>
<tr>
<td>Total Storage</td>
<td>453</td>
</tr>
</tbody>
</table>

CAPACITY OF SEWERS

All sewers within this scheme will be designed to accommodate the peak wet weather flows as determined using the Water Services Association of Australia Sewerage Code.
Example Calculation for Emergency Storage.

Manholes

<table>
<thead>
<tr>
<th>HGL level @ MH</th>
<th>MH base level</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.50</td>
<td>31.9</td>
</tr>
<tr>
<td>37.60</td>
<td>32.1</td>
</tr>
<tr>
<td>37.75</td>
<td>32.33</td>
</tr>
<tr>
<td>37.90</td>
<td>32.55</td>
</tr>
<tr>
<td>38.00</td>
<td>32.76</td>
</tr>
<tr>
<td>38.15</td>
<td>33</td>
</tr>
<tr>
<td>226.90</td>
<td>194.64</td>
</tr>
</tbody>
</table>

- **1.5 m dia**
- **1.77 area**
- **57.10 m^3** 6 manholes

Sewers

<table>
<thead>
<tr>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5 m</td>
</tr>
<tr>
<td>4.5 m</td>
</tr>
<tr>
<td>52 m</td>
</tr>
<tr>
<td>82 m</td>
</tr>
<tr>
<td>96 m</td>
</tr>
<tr>
<td>87 m</td>
</tr>
<tr>
<td>87 m</td>
</tr>
<tr>
<td>104 m</td>
</tr>
</tbody>
</table>
| **533 m**

- **0.6 m dia**
- **0.28 m^2 area**
- **150.70 m^3**

Wet well

- **Spill alarm**
 - **37.25 31.6**
 - **5.65 m above alarm level**
 - **7 m dia**
 - **217.44 m^3**
217.44 Wet well
150.70 Sewers
28.50 2 manholes 1800mm
57.10 6 manholes 1500mm
453.74 m3 Total volume

378 minutes at 20l/s PDWF.
6 hours 18 mins
EXAMPLE PLAN
APPENDIX F - TELEMETRY DATA SHEET

TELEMETRY DATA SHEET

<table>
<thead>
<tr>
<th>Item</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Where does the SPS pump too?</td>
<td></td>
</tr>
<tr>
<td>2. What SPS are located immediately downstream</td>
<td></td>
</tr>
<tr>
<td>3. Pump delivery capacity at operating head</td>
<td></td>
</tr>
<tr>
<td>4. Levels for pumps and discharge point</td>
<td></td>
</tr>
<tr>
<td>5. Friction loss</td>
<td></td>
</tr>
<tr>
<td>6. A full list of all points connected to the telemetry system (with their PLC reference numbers or where hardwired, their RTU terminal numbers, as applicable)</td>
<td></td>
</tr>
<tr>
<td>7. Pressure Main Nominal dia and actual ID.</td>
<td></td>
</tr>
</tbody>
</table>
8. The span and distance from the bottom of the well of the Vega probe.

9. The as constructed (or configured) levels for all operating and alarm points.

10. The as constructed level (m AHD) of:
 a) The face of the Vega Probe;
 b) Top of wet well. c) Overflow
 d) Pressure main Invert Level
 e) Landing platform(if applicable)
 f) Inlet sewer inverts level.
 g) Bottom of wet well. h) The capacity of each pump in normal operation from results of the mechanical / electrical commissioning tests.
 i) The span of power / current transducers and flow meters installed (if applicable)
 j) The capacity in cubic metres of the installed incoming sewer MH and the wet well itself
APPENDIX G - SCHEDULE OF DOCUMENTS TO SUBMIT

SCHEDULE OF DOCUMENTS TO SUBMIT

DESIGN
1. Design Checklist.
2. Pump Selection System curves & NPV
5. Water Hammer Analysis
6. Odour Analysis.
7. Structural Computations.
8. H2S Analysis of Pressure Main.
10. ERS requirements.

PRECOMMISSIONING
1. Pre-commissioning Checklist.
2. Radio Survey Results.
3. Factory pump test results.

COMMISSIONING
1. Telemetry Data Sheet.
2. Watershed Data Sheet.
4. As Constructed drawings (Civil, Mechanical, Electrical, Structural etc) of the SPS and Pressure Main – 2 digital copies on disc.
5. Plant Data Sheets – 2 hard copies, 1 digital copy.
6. PLC Program – 2 digital copies.
7. Job Safety analysis for all routine maintenance tasks to be performed at the SPS.
8. Copy of concrete compressive strength and slump test results - 1 digital copy.
10. Factory or type test pump test results
11. Switchboard factory & site acceptance test certificates completed and signed.